Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40736
Título
Are algebraic links in the Poincaré sphere determined by their Alexander polynomials?
Año del Documento
2020
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Mathematische Zeitschrift, 2020, vol. 294. p. 593-613
Resumen
The Alexander polynomial in several variables is defined for links in three-dimensional homology spheres, in particular, in the Poincaré sphere: the intersection of the surface S={(z1,z2,z3)∈C3:z51+z32+z23=0} with the 5-dimensional sphere S5ε={(z1,z2,z3)∈C3:|z1|2+|z2|2+|z3|2=ε2}. An algebraic link in the Poincaré sphere is the intersection of a germ of a complex analytic curve in (S, 0) with the sphere S5ε of radius ε small enough. Here we discuss to which extent the Alexander polynomial in several variables of an algebraic link in the Poincaré sphere determines the topology of the link. We show that, if the strict transform of a curve in (S, 0) does not intersect the component of the exceptional divisor corresponding to the end of the longest tail in the corresponding E8-diagram, then its Alexander polynomial determines the combinatorial type of the minimal resolution of the curve and therefore the topology of the corresponding link. The Alexander polynomial of an algebraic link in the Poincaré sphere is determined by the Poincaré series of the filtration defined by the corresponding curve valuations. (They coincide with each other for a reducible curve singularity and differ by the factor (1−t) for an irreducible one.) We show that, under conditions similar to those for curves, the Poincaré series of a collection of divisorial valuations determines the combinatorial type of the minimal resolution of the collection.
Palabras Clave
Algebraic links
Conexiones algebráicas
Poincaré sphere
Esfera de Poincaré
Alexander polynomial
Polinomio de Alexander
ISSN
1432-1823
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (grant MTM2015-365764-C3-1-P)
Russian Science Foundation (grant 16-11-10018)
Russian Science Foundation (grant 16-11-10018)
Version del Editor
Propietario de los Derechos
© 2020 Springer
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional