• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Capítulos de Monografías
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Institutos de Investigación
    • Instituto de Investigación en Matemáticas (IMUVA)
    • IMUVA - Capítulos de Monografías
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40808

    Título
    Binomial Ideals and Congruences on Nn
    Autor
    Matusevich, Laura Felicia
    Ojeda, Ignacio
    Año del Documento
    2018
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Greuel, Gert-Martin; Narváez Macarro, Luis; Xambó-Descamps, Sebastià (coords.). Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics: Festschrift for Antonio Campillo on the Occasion of his 65th Birthday. Springer, 2018, p. 429-454
    Abstract
    A congruence on Nn is an equivalence relation on Nn that is compatible with the additive structure. If k is a field, and I is a binomial ideal in k[X1,…,Xn] (that is, an ideal generated by polynomials with at most two terms), then I induces a congruence on Nn by declaring u and v to be equivalent if there is a linear combination with nonzero coefficients of Xu and Xv that belongs to I. While every congruence on Nn arises this way, this is not a one-to-one correspondence, as many binomial ideals may induce the same congruence. Nevertheless, the link between a binomial ideal and its corresponding congruence is strong, and one may think of congruences as the underlying combinatorial structures of binomial ideals. In the current literature, the theories of binomial ideals and congruences on Nn are developed separately. The aim of this survey paper is to provide a detailed parallel exposition, that provides algebraic intuition for the combinatorial analysis of congruences. For the elaboration of this survey paper, we followed mainly (Kahle and Miller Algebra Number Theory 8(6):1297–1364, 2014) with an eye on Eisenbud and Sturmfels (Duke Math J 84(1):1–45, 1996) and Ojeda and Piedra Sánchez (J Symbolic Comput 30(4):383–400, 2000).
    Palabras Clave
    Binomial ideals
    Ideales binomiales
    Graded algebras
    Álgebra graduada
    Congruences
    Congruencias
    ISBN
    978-3-319-96827-8
    Patrocinador
    National Science Foundation (grant DMS-1500832)
    Ministerio de Economía, Industria y Competitividad (project MTM2015-65764-C3-1)
    Junta de Extremadura (grupo de investigación FQM-024)
    Version del Editor
    https://link.springer.com/chapter/10.1007/978-3-319-96827-8_18
    Propietario de los Derechos
    © 2018 Springer
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40808
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • IMUVA - Capítulos de Monografías [3]
    Show full item record
    Files in this item
    Nombre:
    Binomial-ideals-congruences-Nn.pdf
    Tamaño:
    472.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10