Mostrar el registro sencillo del ítem

dc.contributor.authorMatusevich, Laura Felicia
dc.contributor.authorOjeda, Ignacio
dc.date.accessioned2020-04-17T12:02:31Z
dc.date.available2020-04-17T12:02:31Z
dc.date.issued2018
dc.identifier.citationGreuel, Gert-Martin; Narváez Macarro, Luis; Xambó-Descamps, Sebastià (coords.). Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics: Festschrift for Antonio Campillo on the Occasion of his 65th Birthday. Springer, 2018, p. 429-454es
dc.identifier.isbn978-3-319-96827-8es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/40808
dc.descriptionProducción Científicaes
dc.description.abstractA congruence on Nn is an equivalence relation on Nn that is compatible with the additive structure. If k is a field, and I is a binomial ideal in k[X1,…,Xn] (that is, an ideal generated by polynomials with at most two terms), then I induces a congruence on Nn by declaring u and v to be equivalent if there is a linear combination with nonzero coefficients of Xu and Xv that belongs to I. While every congruence on Nn arises this way, this is not a one-to-one correspondence, as many binomial ideals may induce the same congruence. Nevertheless, the link between a binomial ideal and its corresponding congruence is strong, and one may think of congruences as the underlying combinatorial structures of binomial ideals. In the current literature, the theories of binomial ideals and congruences on Nn are developed separately. The aim of this survey paper is to provide a detailed parallel exposition, that provides algebraic intuition for the combinatorial analysis of congruences. For the elaboration of this survey paper, we followed mainly (Kahle and Miller Algebra Number Theory 8(6):1297–1364, 2014) with an eye on Eisenbud and Sturmfels (Duke Math J 84(1):1–45, 1996) and Ojeda and Piedra Sánchez (J Symbolic Comput 30(4):383–400, 2000).es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationBinomial idealses
dc.subject.classificationIdeales binomialeses
dc.subject.classificationGraded algebrases
dc.subject.classificationÁlgebra graduadaes
dc.subject.classificationCongruenceses
dc.subject.classificationCongruenciases
dc.titleBinomial Ideals and Congruences on Nnes
dc.typeinfo:eu-repo/semantics/bookPartes
dc.rights.holder© 2018 Springeres
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-319-96827-8_18es
dc.description.projectNational Science Foundation (grant DMS-1500832)es
dc.description.projectMinisterio de Economía, Industria y Competitividad (project MTM2015-65764-C3-1)es
dc.description.projectJunta de Extremadura (grupo de investigación FQM-024)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem