Mostrar el registro sencillo del ítem

dc.contributor.authorCeleghini, Enrico
dc.contributor.authorGadella Urquiza, Manuel 
dc.contributor.authorOlmo Martínez, Mariano Antonio del 
dc.date.accessioned2020-05-16T10:58:43Z
dc.date.available2020-05-16T10:58:43Z
dc.date.issued2019
dc.identifier.citationJ. Math. Phys. 30 (2019) 083508es
dc.identifier.issn0022-2488es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/40859
dc.descriptionProducción Científicaes
dc.description.abstractWe revise the symmetries of the Zernike polynomials that determine the Lie algebra su(1, 1) ⊕ su(1, 1). We show how they induce discrete as well as continuous bases that coexist in the framework of rigged Hilbert spaces. We also discuss some other interesting properties of Zernike polynomials and Zernike functions. One of the areas of interest of Zernike functions has been their applications in optics. Here, we suggest that operators on the spaces of Zernike functions may play a role in optical image processing.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleZernike functions, rigged Hilbert spaces, and potential applicationses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1063/1.5093488es
dc.identifier.publicationfirstpage083508es
dc.identifier.publicationissue8es
dc.identifier.publicationtitleJournal of Mathematical Physicses
dc.identifier.publicationvolume60es
dc.peerreviewedSIes
dc.identifier.essn1089-7658es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem