Mostrar el registro sencillo del ítem

dc.contributor.authorCeleghini, Enrico
dc.contributor.authorGadella Urquiza, Manuel 
dc.contributor.authorOlmo Martínez, Mariano Antonio del 
dc.date.accessioned2020-05-16T11:19:14Z
dc.date.available2020-05-16T11:19:14Z
dc.date.issued2020
dc.identifier.citationJ. Math. Phys. 61 (2020) 033508es
dc.identifier.issn0022-2488es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/40868
dc.description.abstractThis paper is a contribution to the study of the relations between special functions, Lie algebras and rigged Hilbert spaces. The discrete indices and continuous variables of special functions are in correspondence with the representations of their algebra of symmetry, that induce discrete and continuous bases coexisting on a rigged Hilbert space supporting the representation. Meaningful operators are shown to be continuous on the spaces of test vectors and its dual. Here, the chosen special functions, called “Algebraic Jacobi Functions” are related to the Jacobi polynomials and the Lie algebra is su(2, 2). These functions with m and q fixed, also exhibit a su(1, 1)-symmetry. Different discrete and continuous bases are introduced. An extension in the spirit of the associated Legendre polynomials and the spherical harmonics is presented introducing the “Jacobi Harmonics” that are a generalization of the spherical harmonics to the three-dimensional hypersphere S3.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleGroups, Jacobi functions, and rigged Hilbert spaceses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1063/1.5138238es
dc.identifier.publicationfirstpage033508es
dc.identifier.publicationissue3es
dc.identifier.publicationtitleJournal of Mathematical Physicses
dc.identifier.publicationvolume61es
dc.peerreviewedSIes
dc.identifier.essn1089-7658es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem