Mostrar el registro sencillo del ítem

dc.contributor.authorMohamadian, T.
dc.contributor.authorPanahi, H.
dc.contributor.authorNegro Vadillo, Francisco Javier 
dc.date.accessioned2020-05-16T11:29:01Z
dc.date.available2020-05-16T11:29:01Z
dc.date.issued2020
dc.identifier.citationPhys. Lett. A 384 (2020) 126091es
dc.identifier.issn0375-9601es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/40873
dc.description.abstractWe study in detail the behavior of the energy spectrum for the second harmonic generation (SHG) and a family of corresponding quasi-exactly solvable Schrödinger potentials labeled by a real parameter b. The eigenvalues of this system are obtained by the polynomial deformation of the Lie algebra representation space. We have found the bi-confluent Heun equation (BHE) corresponding to this system in a differential realization approach, by making use of the symmetries. By means of a b-transformation from this second-order equation to a Schrödinger one, we have found a family of quasi-exactly solvable potentials. For each invariant n-dimensional subspace of the second harmonic generation, there are either n potentials, each with one known solution, or one potential with n-known solutions. Well-known potentials like a sextic oscillator or that of a quantum dot appear among them.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleSecond harmonic Hamiltonian: Algebraic and Schrödinger approacheses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.physleta.2019.126091es
dc.identifier.publicationfirstpage126091es
dc.identifier.publicationissue3es
dc.identifier.publicationtitlePhysics Letters Aes
dc.identifier.publicationvolume384es
dc.peerreviewedSIes
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem