dc.contributor.author | Mohamadian, T. | |
dc.contributor.author | Panahi, H. | |
dc.contributor.author | Negro Vadillo, Francisco Javier | |
dc.date.accessioned | 2020-05-16T11:29:01Z | |
dc.date.available | 2020-05-16T11:29:01Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Phys. Lett. A 384 (2020) 126091 | es |
dc.identifier.issn | 0375-9601 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/40873 | |
dc.description.abstract | We study in detail the behavior of the energy spectrum for the second harmonic generation (SHG) and a family of corresponding quasi-exactly solvable Schrödinger potentials labeled by a real parameter b. The eigenvalues of this system are obtained by the polynomial deformation of the Lie algebra representation space. We have found the bi-confluent Heun equation (BHE) corresponding to this system in a differential realization approach, by making use of the symmetries. By means of a b-transformation from this second-order equation to a Schrödinger one, we have found a family of quasi-exactly solvable potentials. For each invariant n-dimensional subspace of the second harmonic generation, there are either n potentials, each with one known solution, or one potential with n-known solutions. Well-known potentials like a sextic oscillator or that of a quantum dot appear among them. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Second harmonic Hamiltonian: Algebraic and Schrödinger approaches | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1016/j.physleta.2019.126091 | es |
dc.identifier.publicationfirstpage | 126091 | es |
dc.identifier.publicationissue | 3 | es |
dc.identifier.publicationtitle | Physics Letters A | es |
dc.identifier.publicationvolume | 384 | es |
dc.peerreviewed | SI | es |
dc.type.hasVersion | info:eu-repo/semantics/draft | es |