Mostrar el registro sencillo del ítem

dc.contributor.authorIbáñez Fonseca, Arturo
dc.contributor.authorOrbanic, Doriana
dc.contributor.authorArias Vallejo, Francisco Javier 
dc.contributor.authorAlonso Rodrigo, Matilde 
dc.contributor.authorZeugolis, Dimitrios I.
dc.contributor.authorRodríguez Cabello, José Carlos 
dc.date.accessioned2020-09-21T12:14:36Z
dc.date.available2020-09-21T12:14:36Z
dc.date.issued2020
dc.identifier.citationSmall, junio 2020, vol 16, p. 2001244es
dc.identifier.issn1613-6810es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/42387
dc.description.abstractComplex recombinant biomaterials that merge the self-assembling properties of different (poly)peptides provide a powerful tool for the achievement of specific structures, such as hydrogel networks, by tuning the thermodynamics and kinetics of the system through a tailored molecular design. In this work, elastin-like (EL) and silk-like (SL) polypeptides are combined to obtain a silk-elastin-like recombinamer (SELR) with dual selfassembly. First, EL domains force the molecule to undergo a phase transition above a precise temperature, which is driven by entropy and occurs very fast. Then, SL motifs interact through the slow formation of β-sheets, stabilized by H-bonds, creating an energy barrier that opposes phase separation. Both events lead to the development of a dynamic microstructure that evolves over time (until a pore size of 49.9 ± 12.7 µm) and to a delayed hydrogel formation (obtained after 2.6 h). Eventually, the network is arrested due to an increase in β-sheet secondary structures (up to 71.8 ± 0.8%) within SL motifs. This gives a high bond strength that prevents the complete segregation of the SELR from water, which results in a fixed metastable microarchitecture. These porous hydrogels are preliminarily tested as biomimetic niches for the isolation of cells in 3D cultures.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherWILEY-VCHes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleInfluence of the Thermodynamic and Kinetic Control of Self‐Assembly on the Microstructure Evolution of Silk‐Elastin‐Like Recombinamer Hydrogelses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1002/smll.202001244es
dc.identifier.publicationfirstpage2001244es
dc.identifier.publicationissue28es
dc.identifier.publicationtitleSmalles
dc.identifier.publicationvolume16es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte de los proyectos de investigación MAT2016-78903-R, MAT2016-79435-R, RTI2018-096320-B-C22 y DTS19/00162 del Ministerio de Ciencia e Innovación, del proyecto VA317P18 de la Junta de Castilla y León, del proyecto 0624_2IQBIONEURO_6_E del programa Interreg V A España Portugal POCTEP y del Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leónes
dc.identifier.essn1613-6829es
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem