Mostrar el registro sencillo del ítem
dc.contributor.author | Ibáñez Fonseca, Arturo | |
dc.contributor.author | Orbanic, Doriana | |
dc.contributor.author | Arias Vallejo, Francisco Javier | |
dc.contributor.author | Alonso Rodrigo, Matilde | |
dc.contributor.author | Zeugolis, Dimitrios I. | |
dc.contributor.author | Rodríguez Cabello, José Carlos | |
dc.date.accessioned | 2020-09-21T12:14:36Z | |
dc.date.available | 2020-09-21T12:14:36Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Small, junio 2020, vol 16, p. 2001244 | es |
dc.identifier.issn | 1613-6810 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/42387 | |
dc.description.abstract | Complex recombinant biomaterials that merge the self-assembling properties of different (poly)peptides provide a powerful tool for the achievement of specific structures, such as hydrogel networks, by tuning the thermodynamics and kinetics of the system through a tailored molecular design. In this work, elastin-like (EL) and silk-like (SL) polypeptides are combined to obtain a silk-elastin-like recombinamer (SELR) with dual selfassembly. First, EL domains force the molecule to undergo a phase transition above a precise temperature, which is driven by entropy and occurs very fast. Then, SL motifs interact through the slow formation of β-sheets, stabilized by H-bonds, creating an energy barrier that opposes phase separation. Both events lead to the development of a dynamic microstructure that evolves over time (until a pore size of 49.9 ± 12.7 µm) and to a delayed hydrogel formation (obtained after 2.6 h). Eventually, the network is arrested due to an increase in β-sheet secondary structures (up to 71.8 ± 0.8%) within SL motifs. This gives a high bond strength that prevents the complete segregation of the SELR from water, which results in a fixed metastable microarchitecture. These porous hydrogels are preliminarily tested as biomimetic niches for the isolation of cells in 3D cultures. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | WILEY-VCH | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Influence of the Thermodynamic and Kinetic Control of Self‐Assembly on the Microstructure Evolution of Silk‐Elastin‐Like Recombinamer Hydrogels | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1002/smll.202001244 | es |
dc.identifier.publicationfirstpage | 2001244 | es |
dc.identifier.publicationissue | 28 | es |
dc.identifier.publicationtitle | Small | es |
dc.identifier.publicationvolume | 16 | es |
dc.peerreviewed | SI | es |
dc.description.project | Este trabajo forma parte de los proyectos de investigación MAT2016-78903-R, MAT2016-79435-R, RTI2018-096320-B-C22 y DTS19/00162 del Ministerio de Ciencia e Innovación, del proyecto VA317P18 de la Junta de Castilla y León, del proyecto 0624_2IQBIONEURO_6_E del programa Interreg V A España Portugal POCTEP y del Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León | es |
dc.identifier.essn | 1613-6829 | es |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |