Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/42651
Título
Striking Increase in Hole Mobility upon Metal Coordination to Triphenylene Schiff Base Semiconducting Multicolumnar Mesophases
Autor
Año del Documento
2020
Editorial
American Chemical Society
Descripción
Producción Científica
Documento Fuente
Inorganic Chemistry, 2020, 59, 15, 10482–10491
Resumo
This paper reports the synthesis, liquid-crystal behavior, and charge-transport properties in the mesophase of triphenylene Schiff bases and their copper(II), nickel(II), and oxovanadium(IV) complexes. The thermal and electronic properties of the Schiff bases are modulated by coordination to the corresponding metal moieties, which have the ability to self-assemble into linear structures and help the alignment of the triphenylene columns. This produces two kinds of electronically nonconnected columnar regions, one purely organic and one more inorganic. The most remarkable effect is a striking charge mobility enhancement in the metal-containing mesophases, due to the contribution of the more inorganic columns: in comparison to values of hole mobility along the columnar stacking for the purely organic columnar mesophases, on the order of 10–7 cm2 V–1 s–1, these values jump to 1–10 cm2 V–1 s–1 in these hybrid inorganic/organic columnar materials.
Palabras Clave
Molecular interactions
ISSN
0020-1669
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades (Project CTQ2017-89217-P)
Junta de Castilla y León (Project VA038G18)
Universidad del País Vasco / EHU (ProjectGIU18/146)
Junta de Castilla y León (Project VA038G18)
Universidad del País Vasco / EHU (ProjectGIU18/146)
Version del Editor
Propietario de los Derechos
© 2019 American Chemical Society
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional