• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Grado UVa
    • Dokumentanzeige
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Grado UVa
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/43757

    Título
    Prolongación analítica de sumas de series de potencias mediante los Métodos de Borel y de Mittagleffler
    Autor
    Arranz Esteban, Raúl
    Director o Tutor
    Sanz Gil, JavierAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    2020
    Titulación
    Grado en Matemáticas
    Zusammenfassung
    En este trabajo, se trata de presentar diversos resultados acerca de la prolongación analítica de la función suma de una serie de potencias, con radio de convergencia finito y positivo (y, por simplicidad y sin pérdida de generalidad, centrada en 0), más allá de su disco abierto de convergencia. Se presentará el concepto de punto barrera, y se probará su existencia en la circunferencia frontera del disco de convergencia. Se estudiarán ejemplos de series lacunares, para las que dicha frontera es la frontera natural, es decir, todos sus puntos son barrera. Finalmente, se describirán los procedimientos de sumación de Borel y de Mittag-Leffler, que proporcionan la prolongación analítica de la función suma de una serie de potencias a, respectivamente, su polígono de Borel y a la denominada estrella de Mittag-Leffler, conjunto maximal (con respecto de la contención) entre aquellos estrellados con respecto de 0 para los que la prolongación es posible.
     
    The aim is to introduce several results about the analytic continuation of the sum of a power series having a positive finite radius of convergence (for simplicity and without loss of generality, centred at 0), beyond its circle of convergence. We will introduce the concept of barrier point, and we will prove its existence in the boundary of the circle of convergence. We will study some examples of lacunary series, whose circumference of convergence is a natural boundary, that is, all its points are barrier points. Finally, we will describe the procedures of the Borel summability and Mittag-Leffler summability of a power series, which provide the analytic continuation of the sum of a power series in, respectively, the Borel polygon and the so-called Mittag-Leffler star, maximal set (with respect to inclusion) among the star-shaped sets with respect to 0 for which the continuation is possible.
    Palabras Clave
    Prolongación analítica
    Punto barrera
    Sumabilidad
    Estrella de Mittag-Leffler
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/43757
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30857]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    TFG-G4572.pdf
    Tamaño:
    2.691Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10