dc.contributor.author | Conde del Río, David | |
dc.contributor.author | Fernández Temprano, Miguel Alejandro | |
dc.contributor.author | Rueda Sabater, María Cristina | |
dc.contributor.author | Salvador González, Bonifacio | |
dc.date.accessioned | 2021-02-21T09:21:39Z | |
dc.date.available | 2021-02-21T09:21:39Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Advances in Data Analysis and Classification. pag 1-25. | es |
dc.identifier.issn | 1862-5347 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/45327 | |
dc.description.abstract | In many real classi cation problems a monotone relation between some predictors and the classes may be assumed when higher (or lower) values of those predictors are related to higher levels of the response. In this paper, we propose new boosting algorithms, based on LogitBoost, that incorporate this isotonicity information, yielding more accurate and easily interpretable rules. These algorithms are based on theoretical developments that consider isotonic regression. We show the good performance of these procedures not only on simulations, but also on real data sets coming from two very different contexts, namely cancer diagnostic and failure of induction motors. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.title | Isotonic boosting classification rules | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | Spinger | es |
dc.identifier.doi | 10.1007/s11634-020-00404-9 | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11634-020-00404-9 | es |
dc.identifier.publicationtitle | Advances in Data Analysis and Classification | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1862-5355 | es |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |