Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45597
Título
Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front
Autor
Año del Documento
2018
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Automation in construction, Septiembre 2018, vol.93, p. 325-338
Resumen
The construction of tunnels has serious geomechanical uncertainties involving matters of both safety and budget. Nowadays, modern machinery gathers very useful information about the drilling process: the so-called Monitor While Drilling (MWD) data. So, one challenge is to provide support for the tunnel construction based on this on-site data . Here, an MWD based methodology to support tunnel construction is introduced: a Rock Mass Rating (RMR) estimation is provided by an MWD rocky based characterization of the excavation front and expert knowledge. Well-known machine learning (ML) and computational intelligence (CI) techniques are used. In addition, a collectible and "interpretable" base of
knowledge is obtained, linking MWD characterized excavation fronts and RMR. The results from a real tunnel case show a good and serviceable performance: the accuracy of the RMR estimations is high, Errortest=3%, using a generated knowledge base of 15 fuzzy rules, 3 linguistic variables and 3 linguistic terms. This proposal is, however, is open to new algorithms to reinforce its performance.
Palabras Clave
Tunnels
MWD
FRBS
Selection/extraction of features
Clustering
RMR
Decision making
ISSN
0926-5805
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R.
Version del Editor
Propietario de los Derechos
Elsevier
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem