Mostrar el registro sencillo del ítem
dc.contributor.author | Galende Hernández, Marta | |
dc.contributor.author | Menéndez, Manuel | |
dc.contributor.author | Fuente Aparicio, María Jesús de la | |
dc.contributor.author | Sáinz Palmero, Gregorio Ismael | |
dc.date.accessioned | 2021-03-09T17:56:49Z | |
dc.date.available | 2021-03-09T17:56:49Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Automation in construction, Septiembre 2018, vol.93, p. 325-338 | es |
dc.identifier.issn | 0926-5805 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/45597 | |
dc.description | Producción Científica | es |
dc.description.abstract | The construction of tunnels has serious geomechanical uncertainties involving matters of both safety and budget. Nowadays, modern machinery gathers very useful information about the drilling process: the so-called Monitor While Drilling (MWD) data. So, one challenge is to provide support for the tunnel construction based on this on-site data . Here, an MWD based methodology to support tunnel construction is introduced: a Rock Mass Rating (RMR) estimation is provided by an MWD rocky based characterization of the excavation front and expert knowledge. Well-known machine learning (ML) and computational intelligence (CI) techniques are used. In addition, a collectible and "interpretable" base of knowledge is obtained, linking MWD characterized excavation fronts and RMR. The results from a real tunnel case show a good and serviceable performance: the accuracy of the RMR estimations is high, Errortest=3%, using a generated knowledge base of 15 fuzzy rules, 3 linguistic variables and 3 linguistic terms. This proposal is, however, is open to new algorithms to reinforce its performance. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.subject.classification | Tunnels | es |
dc.subject.classification | MWD | es |
dc.subject.classification | FRBS | es |
dc.subject.classification | Selection/extraction of features | es |
dc.subject.classification | Clustering | es |
dc.subject.classification | RMR | es |
dc.subject.classification | Decision making | es |
dc.title | Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | Elsevier | es |
dc.identifier.doi | 10.1016/j.autcon.2018.05.019 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/abs/pii/S092658051630454X | es |
dc.identifier.publicationfirstpage | 325 | es |
dc.identifier.publicationlastpage | 338 | es |
dc.identifier.publicationtitle | Automation in construction | es |
dc.identifier.publicationvolume | 93 | es |
dc.peerreviewed | SI | es |
dc.description.project | Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R. | es |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |