• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48450

    Título
    A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data
    Autor
    Moya Saez, ElisaAutoridad UVA Orcid
    Peña Nogales, ÓscarAutoridad UVA
    Luis García, Rodrigo deAutoridad UVA Orcid
    Alberola López, CarlosAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computer Methods and Programs in Biomedicine, 2021, vol. 210, 106371
    Résumé
    Background and Objective: Synthetic magnetic resonance imaging (MRI) is a low cost procedure that serves as a bridge between qualitative and quantitative MRI. However, the proposed methods require very specific sequences or private protocols which have scarcely found integration in clinical scanners. We propose a learning-based approach to compute T1, T2, and PD parametric maps from only a pair of T1- and T2-weighted images customarily acquired in the clinical routine. Methods: Our approach is based on a convolutional neural network (CNN) trained with synthetic data; specifically, a synthetic dataset with 120 volumes was constructed from the anatomical brain model of the BrainWeb tool and served as the training set. The CNN learns an end-to-end mapping function to transform the input T1- and T2-weighted images to their underlying T1, T2, and PD parametric maps. Then, conventional weighted images unseen by the network are analytically synthesized from the parametric maps. The network can be fine tuned with a small database of actual weighted images and maps for better performance. Results:This approach is able to accurately compute parametric maps from synthetic brain data achieving normalized squared error values predominantly below 1%. It also yields realistic parametric maps from actual MR brain acquisitions with T1, T2, and PD values in the range of the literature and with correlation values above 0.95 compared to the T1 and T2 maps obtained from relaxometry sequences. Further, the synthesized weighted images are visually realistic; the mean square error values are always below 9% and the structural similarity index is usually above 0.90. Network fine tuning with actual maps improves performance, while training exclusively with a small database of actual maps shows a performance degradation. Conclusions:These results show that our approach is able to provide realistic parametric maps and weighted images out of a CNN that (a) is trained with a synthetic dataset and (b) needs only two inputs, which are in turn obtained from a common full-brain acquisition that takes less than 8 minutes of scan time. Although a fine tuning with actual maps improves performance, synthetic data is crucial to reach acceptable performance levels. Hence, we show the utility of our approach for both quantitative MRI in clinical viable times and for the synthesis of additional weighted images to those actually acquired.
    Palabras Clave
    Parametric Maps
    Mapas paramétricos
    Magnetic resonance imaging
    Imagen por resonancia magnética
    ISSN
    0169-2607
    Revisión por pares
    SI
    DOI
    10.1016/j.cmpb.2021.106371
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (grants TEC2017-82408-R and RTI2018-094569-B-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0169260721004454?via%3Dihub
    Propietario de los Derechos
    © 2021 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/48450
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Deep-learning-approach.pdf
    Tamaño:
    3.684Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10