Mostrar el registro sencillo del ítem
dc.contributor.author | Pourdarbani, Razieh | |
dc.contributor.author | Sabzi, Sajad | |
dc.contributor.author | Arribas Sánchez, Juan Ignacio | |
dc.date.accessioned | 2021-09-17T06:44:16Z | |
dc.date.available | 2021-09-17T06:44:16Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Heliyon, 2021, vol. 7, n. 9, e07942 | es |
dc.identifier.issn | 2405-8440 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/48677 | |
dc.description | Producción Científica | es |
dc.description.abstract | Nondestructive estimation of fruit properties during their ripening stages ensures the best value for producers and vendors. Among common quality measurement methods, spectroscopy is popular and enables physicochemical properties to be nondestructively estimated. The current study aims to nondestructively predict tissue firmness (kgf/cm), acidity (pH level) and starch content index (%) in apples (Malus M. pumila) samples (Fuji var.) at various ripening stages using visible/near infrared (Vis-NIR) spectral data in 400–1000 nm wavelength range. Results show that non-linear regression done by an artificial neural network-cultural algorithm (ANN-CA) was able to properly estimate the investigated fruit properties. Moreover, the performance of the proposed method was evaluated for Vis-NIR data based on optimal NIR wavelength values selected by a genetic optimization tool. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Acidity | es |
dc.subject.classification | Acidez | es |
dc.subject.classification | Artificial neural networks | es |
dc.subject.classification | Redes neuronales artificiales | es |
dc.subject.classification | Physicochemical properties | es |
dc.subject.classification | Propiedades físico-químicas | es |
dc.title | Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2021 Elsevier | es |
dc.identifier.doi | 10.1016/j.heliyon.2021.e07942 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2405844021020454?via%3Dihub | es |
dc.peerreviewed | SI | es |
dc.description.project | Agencia Estatal de Investigación - Fondo Europeo de Desarrollo Regional (project RTI2018-098958-B-I00) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional