Mostrar el registro sencillo del ítem

dc.contributor.authorPourdarbani, Razieh
dc.contributor.authorSabzi, Sajad
dc.contributor.authorArribas Sánchez, Juan Ignacio 
dc.date.accessioned2021-09-17T06:44:16Z
dc.date.available2021-09-17T06:44:16Z
dc.date.issued2021
dc.identifier.citationHeliyon, 2021, vol. 7, n. 9, e07942es
dc.identifier.issn2405-8440es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/48677
dc.descriptionProducción Científicaes
dc.description.abstractNondestructive estimation of fruit properties during their ripening stages ensures the best value for producers and vendors. Among common quality measurement methods, spectroscopy is popular and enables physicochemical properties to be nondestructively estimated. The current study aims to nondestructively predict tissue firmness (kgf/cm), acidity (pH level) and starch content index (%) in apples (Malus M. pumila) samples (Fuji var.) at various ripening stages using visible/near infrared (Vis-NIR) spectral data in 400–1000 nm wavelength range. Results show that non-linear regression done by an artificial neural network-cultural algorithm (ANN-CA) was able to properly estimate the investigated fruit properties. Moreover, the performance of the proposed method was evaluated for Vis-NIR data based on optimal NIR wavelength values selected by a genetic optimization tool.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAcidityes
dc.subject.classificationAcidezes
dc.subject.classificationArtificial neural networkses
dc.subject.classificationRedes neuronales artificialeses
dc.subject.classificationPhysicochemical propertieses
dc.subject.classificationPropiedades físico-químicases
dc.titleNondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 Elsevieres
dc.identifier.doi10.1016/j.heliyon.2021.e07942es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2405844021020454?via%3Dihubes
dc.peerreviewedSIes
dc.description.projectAgencia Estatal de Investigación - Fondo Europeo de Desarrollo Regional (project RTI2018-098958-B-I00)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem