Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48677
Título
Nondestructive estimation of three apple fruit properties at various ripening levels with optimal Vis-NIR spectral wavelength regression data
Año del Documento
2021
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Heliyon, 2021, vol. 7, n. 9, e07942
Resumen
Nondestructive estimation of fruit properties during their ripening stages ensures the best value for producers and vendors. Among common quality measurement methods, spectroscopy is popular and enables physicochemical properties to be nondestructively estimated. The current study aims to nondestructively predict tissue firmness (kgf/cm), acidity (pH level) and starch content index (%) in apples (Malus M. pumila) samples (Fuji var.) at various ripening stages using visible/near infrared (Vis-NIR) spectral data in 400–1000 nm wavelength range. Results show that non-linear regression done by an artificial neural network-cultural algorithm (ANN-CA) was able to properly estimate the investigated fruit properties. Moreover, the performance of the proposed method was evaluated for Vis-NIR data based on optimal NIR wavelength values selected by a genetic optimization tool.
Palabras Clave
Acidity
Acidez
Artificial neural networks
Redes neuronales artificiales
Physicochemical properties
Propiedades físico-químicas
ISSN
2405-8440
Revisión por pares
SI
Patrocinador
Agencia Estatal de Investigación - Fondo Europeo de Desarrollo Regional (project RTI2018-098958-B-I00)
Propietario de los Derechos
© 2021 Elsevier
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional