• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48972

    Título
    Supervised contrastive learning over prototype-label embeddings for network intrusion detection
    Autor
    López Martín, ManuelAutoridad UVA
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Arribas Sánchez, Juan IgnacioAutoridad UVA Orcid
    Carro Martínez, BelénAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Information Fusion, 2022, vol. 79, p. 200-228
    Resumen
    Contrastive learning makes it possible to establish similarities between samples by comparing their distances in an intermediate representation space (embedding space) and using loss functions designed to attract/repel similar/dissimilar samples. The distance comparison is based exclusively on the sample features. We propose a novel contrastive learning scheme by including the labels in the same embedding space as the features and performing the distance comparison between features and labels in this shared embedding space. Following this idea, the sample features should be close to its ground-truth (positive) label and away from the other labels (negative labels). This scheme allows to implement a supervised classification based on contrastive learning. Each embedded label will assume the role of a class prototype in embedding space, with sample features that share the label gathering around it. The aim is to separate the label prototypes while minimizing the distance between each prototype and its same-class samples. A novel set of loss functions is proposed with this objective. Loss minimization will drive the allocation of sample features and labels in embedding space. Loss functions and their associated training and prediction architectures are analyzed in detail, along with different strategies for label separation. The proposed scheme drastically reduces the number of pair-wise comparisons, thus improving model performance. In order to further reduce the number of pair-wise comparisons, this initial scheme is extended by replacing the set of negative labels by its best single representative: either the negative label nearest to the sample features or the centroid of the cluster of negative labels. This idea creates a new subset of models which are analyzed in detail. The outputs of the proposed models are the distances (in embedding space) between each sample and the label prototypes. These distances can be used to perform classification (minimum distance label), features dimensionality reduction (using the distances and the embeddings instead of the original features) and data visualization (with 2 or 3D embeddings). Although the proposed models are generic, their application and performance evaluation is done here for network intrusion detection, characterized by noisy and unbalanced labels and a challenging classification of the various types of attacks. Empirical results of the model applied to intrusion detection are presented in detail for two well-known intrusion detection datasets, and a thorough set of classification and clustering performance evaluation metrics are included.
    Palabras Clave
    Label embedding
    Incrustación de etiquetas
    Contrastive learning
    Aprendizaje contrastivo
    Network intrusion detection
    Detección de intrusos en red
    ISSN
    1566-2535
    Revisión por pares
    SI
    DOI
    10.1016/j.inffus.2021.09.014
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación - Fondo Europeo de Desarrollo Regional (grant RTI2018-098958-B-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1566253521001913?via%3Dihub
    Propietario de los Derechos
    © 2021 Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/48972
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Supervised-contrastive-learning-over.pdf
    Tamaño:
    16.67Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10