Mostrar el registro sencillo del ítem

dc.contributor.authorJiménez Garrido, Jesús Javier
dc.contributor.authorSanz Gil, Javier 
dc.contributor.authorSchindl, Gerhard
dc.date.accessioned2021-10-13T11:05:04Z
dc.date.available2021-10-13T11:05:04Z
dc.date.issued2021
dc.identifier.citationRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, vol.115, n. 4, p. 1-18es
dc.identifier.issn1578-7303es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/49038
dc.descriptionProducción Científicaes
dc.description.abstractWe study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map in Carleman–Roumieu ultraholomorphic classes defined by regular sequences in the sense of E. M. Dyn’kin. We extend previous results by J. Schmets and M. Valdivia, by V. Thilliez, and by the authors, and show the prominent role played by an index, associated with the sequence, that was introduced by V. Thilliez. The techniques involve regular variation, integral transforms and characterization results of A. Debrouwere in a half-plane, stemming from his study of the surjectivity of the moment mapping in general Gelfand–Shilov spaces.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationCarleman ultraholomorphic classeses
dc.subject.classificationAsymptotic expansionses
dc.subject.classificationLaplace transformes
dc.subject.classificationRegular variationes
dc.titleSurjectivity of the asymptotic borel map in Carleman–Roumieu ultraholomorphic classes defined by regular sequenceses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The Authorses
dc.identifier.doi10.1007/s13398-021-01119-yes
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s13398-021-01119-yes
dc.identifier.publicationissue4es
dc.identifier.publicationtitleRevista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticases
dc.identifier.publicationvolume115es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (project MTM2016-77642-C2-1-P)es
dc.description.projectMinisterio de Ciencia y Innovación (project PID2019-105621GB-I00)es
dc.description.projectAustrian Science Fund (projects FWFP32905- N y P33417-N)es
dc.identifier.essn1579-1505es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco12 Matemáticases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem