Show simple item record

dc.contributor.authorCuadra Rodríguez, Daniel
dc.contributor.authorBarroso Solares, Suset 
dc.contributor.authorPinto Sanz, Javier 
dc.date.accessioned2021-10-18T11:25:07Z
dc.date.available2021-10-18T11:25:07Z
dc.date.issued2021
dc.identifier.citationNanomaterials, 2021, vol. 11, n. 3, 621es
dc.identifier.issn2079-4991es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/49131
dc.descriptionProducción Científicaes
dc.description.abstractNanocellular polymers (i.e., cellular polymers with cells and walls in the nanometric range) were first produced in the early 2000s, with the works of Yokoyama et al. being the main precedents in this field, producing nanocellular structures by using supercritical carbon dioxide. However, it was not until a decade later that this research field started to grow significantly, attracting several international research groups in the quest to obtain cellular polymers with cells in the nanocellular range. From 2010 to 2014, the basis of bulk nanocellular foam production was established, and the CO2 gas dissolution foaming technique rapidly proved to be the most suitable production route for such materials (details and theoretical basis of this technique can be found elsewhere). Continuous technical advances (e.g., higher saturation pressures, lower saturation temperatures, faster pressure drop rates) and diverse nucleating agents, from inorganic nanoparticles to block copolymers, provided a broad collection of cellular polymers with submicrometric and nanometric cells. Although quite diverse polymers allowed the achievement of submicrometric cells, amorphous polymers such as polyetherimide (PEI), polystyrene (PS), and, notably, poly (methyl methacrylate) (PMMA) provided the best nanocellular structures, with cell sizes even below 100 nm and significant density reductions.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationNanocellular polymerses
dc.subject.classificationNanocellular foamses
dc.titleAdvanced nanocellular foams: Perspectives on the current knowledge and challengeses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 MDPIes
dc.identifier.doi10.3390/nano11030621es
dc.relation.publisherversionhttps://www.mdpi.com/2079-4991/11/3/621es
dc.identifier.publicationfirstpage621es
dc.identifier.publicationissue3es
dc.identifier.publicationtitleNanomaterialses
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectMinisterio de Asuntos Económicos y Transformación Digital y FEDER (grants RTI2018-098749-BI00, RTI2018-097367-A-I00, and PRE2019-088820)es
dc.description.projectJunta de Castilla y León (grants VA275P18 and CLU-2019-04)es
dc.identifier.essn2079-4991es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco23 Químicaes
dc.subject.unesco22 Físicaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record