dc.contributor.author | Cuadra Rodríguez, Daniel | |
dc.contributor.author | Barroso Solares, Suset | |
dc.contributor.author | Pinto Sanz, Javier | |
dc.date.accessioned | 2021-10-18T11:25:07Z | |
dc.date.available | 2021-10-18T11:25:07Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Nanomaterials, 2021, vol. 11, n. 3, 621 | es |
dc.identifier.issn | 2079-4991 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/49131 | |
dc.description | Producción Científica | es |
dc.description.abstract | Nanocellular polymers (i.e., cellular polymers with cells and walls in the nanometric
range) were first produced in the early 2000s, with the works of Yokoyama et al. being
the main precedents in this field, producing nanocellular structures by using supercritical
carbon dioxide. However, it was not until a decade later that this research field started to
grow significantly, attracting several international research groups in the quest to obtain
cellular polymers with cells in the nanocellular range. From 2010 to 2014, the basis of
bulk nanocellular foam production was established, and the CO2 gas dissolution foaming
technique rapidly proved to be the most suitable production route for such materials
(details and theoretical basis of this technique can be found elsewhere). Continuous
technical advances (e.g., higher saturation pressures, lower saturation temperatures, faster
pressure drop rates) and diverse nucleating agents, from inorganic nanoparticles to block
copolymers, provided a broad collection of cellular polymers with submicrometric and
nanometric cells. Although quite diverse polymers allowed the achievement of submicrometric
cells, amorphous polymers such as polyetherimide (PEI), polystyrene (PS), and,
notably, poly (methyl methacrylate) (PMMA) provided the best nanocellular structures,
with cell sizes even below 100 nm and significant density reductions. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Nanocellular polymers | es |
dc.subject.classification | Nanocellular foams | es |
dc.title | Advanced nanocellular foams: Perspectives on the current knowledge and challenges | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2021 MDPI | es |
dc.identifier.doi | 10.3390/nano11030621 | es |
dc.relation.publisherversion | https://www.mdpi.com/2079-4991/11/3/621 | es |
dc.identifier.publicationfirstpage | 621 | es |
dc.identifier.publicationissue | 3 | es |
dc.identifier.publicationtitle | Nanomaterials | es |
dc.identifier.publicationvolume | 11 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Asuntos Económicos y Transformación Digital y FEDER (grants RTI2018-098749-BI00, RTI2018-097367-A-I00, and PRE2019-088820) | es |
dc.description.project | Junta de Castilla y León (grants VA275P18 and CLU-2019-04) | es |
dc.identifier.essn | 2079-4991 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 23 Química | es |
dc.subject.unesco | 22 Física | es |