Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/49210
Título
Effect of the elastomer viscosity on the morphology and impact behavior of injection molded foams based on blends of polypropylene and polyolefin elastomers
Autor
Año del Documento
2021
Editorial
Wiley
Descripción
Producción Científica
Documento Fuente
Journal of Applied Polymer Science, 2021, vol. 138, n. 2, 50425
Abstract
The impact resistance of injection-molded polypropylene (PP) parts is severely reduced when they are foamed. It is necessary to implement strategies, such as elastomer toughening, to increase the impact behavior of foamed parts. However, the knowledge on the effect of elastomer addition on the morphology, cellular structure, and impact of injection-molded cellular parts is very limited. In this work, foamed parts based on blends of PP and polyolefin elastomers have been produced and characterized. A high and a low viscosity octene-ethylene copolymer (EOC) and a high viscosity butene-ethylene copolymer (EBC) were employed. The blends have been thermally and rheological characterized. Solids materials and foams (relative density 0.76) were injection-molded. The solid phase and cellular structure morphologies were studied using scanning electron microscopy. The results showed that elastomer toughening has been successful to obtain an improvement of the impact behavior in solid and cellular polymers. In this case, EOC materials provide an appropriate interfacial adhesion and optimized cellular structure which results in high impact resistance. The optimum elastomer to improve the properties is the EOC with a higher viscosity which provides impact resistance with n values below 3 due to the toughening of polymer matrix, thick skin thickness, and low cell size.
Palabras Clave
Elastomers
Elastómeros
Foams
Espumas
Mechanical properties
Propiedades mecánicas
Rheology
Reología
ISSN
1097-4628
Revisión por pares
SI
Patrocinador
Junta de Castilla y León (grant VA275P18)
Ministerio de Ciencia, Innovación y Universidades (project RTI2018-098749-B-I00)
Ministerio de Ciencia, Innovación y Universidades (project RTI2018-098749-B-I00)
Version del Editor
Propietario de los Derechos
© 2021 Wiley
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional