Mostrar el registro sencillo del ítem
dc.contributor.advisor | Crespo González Carvajal, Yania | es |
dc.contributor.author | Montero Pérez, Osbel | |
dc.contributor.editor | Universidad de Valladolid. Escuela de Ingeniería Informática de Valladolid | es |
dc.date.accessioned | 2021-11-18T09:22:59Z | |
dc.date.available | 2021-11-18T09:22:59Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/50379 | |
dc.description.abstract | En la última década hemos sido testigos del considerable incremento de proyectos basados en aplicaciones de Big Data. Algunos de los tipos más populares de esas aplicaciones han sido: los sistemas de recomendaciones, la predicción de características y la toma de decisiones. En este nuevo auge han surgido propuestas de implementación de modelos de calidad para las aplicaciones de Big data que por su gran heterogeneidad se hace difícil la selección del modelo de calidad ideal para el desarrollo de un tipo específico de aplicación de Big Data. En el presente Trabajo de Fin de Máster se realiza un estudio de mapeo sistemático (SMS, por sus siglas en inglés) que parte de dos preguntas clave de investigación. La primera trata sobre cuál es el estado en la identificación de riesgos, problemas o desafíos en las aplicaciones de Big Data. La segunda, trata sobre qué modelos de calidad se han aplicado hasta la fecha a las aplicaciones de Big Data, específicamente a los sistemas de predicción de características. El objetivo final es analizar los modelos de calidad disponibles y adaptar un modelo de calidad a partir de los existentes que se puedan aplicar a un tipo específico de aplicación de Big Data: los sistemas de predicción de características. El modelo definido comprende un conjunto de características de calidad definidas como parte del modelo y métricas de calidad para evaluarlas. Finalmente, se realiza una aproximación a un caso de estudio donde se aplica el modelo y se evalúan las características de calidad definidas a través de sus métricas de calidad presentándose los resultados obtenidos. | es |
dc.description.abstract | In the last decade, we have been witnesses of the considerable increment of projects based on big data applications. Some of the most popular types of those applications have been: Recommendations, Feature Predictions, and Decision making. In this new context, several proposals have arisen for the implementation of quality models applied to Big Data applications. As part of the current Master thesis, a Systematic Mapping Study (SMS) is conducted which starts from two key research questions. The first one is about what is the state of the art about the identification of risks, issues, problems, or challenges in big data applications. The second one, is about which quality models have been applied up to date to big data applications, specifically to feature prediction systems. The main objective is to analyze the available quality models and adapt a quality model from the existing ones that can be applied to a specific type of Big Data application: The Feature Prediction Systems. The defined model comprises a set of quality characteristics defined as part of the model and a set of quality metrics to evaluate them. Finally, an approach is made to a case study where the model is applied, and the quality characteristics defined through its quality metrics are evaluated. The results are presented and discussed. | es |
dc.description.sponsorship | Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos) | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Big Data | es |
dc.subject.classification | Quality models | es |
dc.subject.classification | Feature prediction systems | es |
dc.subject.classification | Quality characteristics | es |
dc.title | Adapting a quality model for a Big Data application: the case of a feature prediction system | es |
dc.type | info:eu-repo/semantics/masterThesis | es |
dc.description.degree | Máster en Ingeniería Informática | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
- Trabajos Fin de Máster UVa [6822]
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional