Mostrar el registro sencillo del ítem
dc.contributor.author | García Cabezón, Ana Cristina | |
dc.contributor.author | Godinho, Vanda | |
dc.contributor.author | Salvo Comino, Coral | |
dc.contributor.author | Torres Hernández, Yadir | |
dc.contributor.author | Martín Pedrosa, Fernando | |
dc.date.accessioned | 2021-12-15T10:31:56Z | |
dc.date.available | 2021-12-15T10:31:56Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Materials, 2021, vol. 14, n. 21, 6322 | es |
dc.identifier.issn | 1996-1944 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/50952 | |
dc.description | Producción Científica | es |
dc.description.abstract | Porous titanium implants can be a good solution to solve the stress shielding phenomenon. However, the presence of pores compromises mechanical and corrosion resistance. In this work, porous titanium samples obtained using a space-holder technique are coated with Chitosan, Chitosan/AgNPs and Chitosan/Hydroxyapatite using only one step and an economic electrodeposition method. The coatings’ topography, homogeneity and chemical composition were analyzed. A study of the effect of the porosity and type of coating on corrosion resistance and cellular behavior was carried out. The electrochemical studies reveal that porous samples show high current densities and an unstable oxide film; therefore, there is a need for surface treatments to improve corrosion resistance. The Chitosan coatings provide a significant improvement in the corrosion resistance, but the Chitosan/AgNPs and Chitosan/HA coatings showed the highest protection efficiency, especially for the more porous samples. Furthermore, these coatings have better adherence than the chitosan coatings, and the higher surface roughness obtained favors cell adhesion and proliferation. Finally, a combination of coating and porous substrate material with the best biomechanical balance and biofunctional behavior is proposed as a potential candidate for the replacement of small, damaged bone tissues. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Titanium implants | es |
dc.subject.classification | Implantes de titanio | es |
dc.subject.classification | Electrodeposition | es |
dc.subject.classification | Electrodeposición | es |
dc.subject.classification | Chitosan-based nanocomposites | es |
dc.subject.classification | Nanocompuestos de quitosano | es |
dc.title | Improved corrosion behavior and biocompatibility of porous Titanium samples coated with bioactive Chitosan-based nanocomposites | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2021 The Authors | es |
dc.identifier.doi | 10.3390/ma14216322 | es |
dc.relation.publisherversion | https://www.mdpi.com/1996-1944/14/21/6322 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades (grants RTI2018-097990-B-I00 and PID2019-109371GB-I00) | es |
dc.description.project | Junta de Andalucía - Fondo Europeo de Desarrollo Regional (project US-1259771) | es |
dc.description.project | Junta de Castilla y León (projects VA275P18 and VA044G19) | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional