• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/51417

    Título
    On coincidence of feedback and global Stackelberg equilibria in a class of differential games
    Autor
    Martín Herrán, GuiomarAutoridad UVA Orcid
    Rubio, Santiago J.
    Año del Documento
    2021
    Documento Fuente
    European Journal of Operational Research, 2021, vol. 293, n. 2. p. 761-772
    Resumo
    This paper shows for a class of differential games that the global Stackelberg equilibrium (GSE) coincides with the feedback Stackelberg equilibrium (FSE), although the GSE assumes that the leader/regulator an- nounces at the initial time the regulatory instrument rule she will follow for the rest of the game, while in the FSE, the regulator at any time chooses the optimal level of the regulatory instrument rate. This coincidence is based on the fact that the FSE is calculated using dynamic programming what implies that although the regulator chooses the regulatory instrument rate level that maximizes social welfare, the first-order condition for the maximization of the right-hand side of the Hamilton-Jacobi-Bellman equa- tion implicitly defines a rule for the regulatory instrument. Then, as the regulatory instrument rule de- fined by the FSE implements the efficient outcome as the GSE does, the rules defined by both equilibria must be the same. In the second part of the paper, we check that this is the case for two examples. The first is an operations research model, while the second is an economic model. The first example fits in a linear-state differential game structure, while the second example presents a linear-quadratic specifica- tion. In both cases the regulatory instrument rules for both equilibria (GSE and FSE) are calculated and identical expressions are obtained.
    ISSN
    0377-2217
    Revisión por pares
    SI
    DOI
    10.1016/j.ejor.2020.12.022
    Patrocinador
    Agencia Estatal de Investigación (AEI) y la Junta de Castilla y León (projects ECO2017-82227-P , VA105G18 y VA169P20, respectivamente) los dos últimos co-financiados por fondos FEDER (UE).
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S037722172031050X?via%3Dihub
    Propietario de los Derechos
    © 2020 Elsevier
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/51417
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP20 - Artículos de revista [181]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    MARTIN-HERRAN AND RUBIO[29OCT20].pdf
    Tamaño:
    436.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10