Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Manso, Alfonso
dc.contributor.authorQuintano Pastor, María del Carmen 
dc.date.accessioned2022-03-22T13:23:52Z
dc.date.available2022-03-22T13:23:52Z
dc.date.issued2020
dc.identifier.citationRemote Sensing, 2020, vol. 12, n. 5, 858es
dc.identifier.issn2072-4292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/52583
dc.descriptionProducción Científicaes
dc.description.abstractSouthern European countries, particularly Spain, are greatly affected by forest fires each year. Quantification of burned area is essential to assess wildfire consequences (both ecological and socioeconomic) and to support decision making in land management. Our study proposed a new synergetic approach based on hotspots and reflectance data to map burned areas from remote sensing data in Mediterranean countries. It was based on a widely used species distribution modeling algorithm, in particular the Maximum Entropy (MaxEnt) one-class classifier. Additionally, MaxEnt identifies variables with the highest contribution to the final model. MaxEnt was trained with hyperspectral indexes (from Earth-Observing One (EO-1) Hyperion data) and hotspot information (from Visible Infrared Imaging Radiometer Suite Near Real-Time 375 m active fire product). Official fire perimeter measurements by Global Positioning System acted as a ground reference. A highly accurate burned area estimation (overall accuracy = 0.99%) was obtained, and the indexes which most contributed to identifying burned areas included Simple Ratio (SR), Red Edge Normalized Difference Vegetation Index (NDVI750), Normalized Difference Water Index (NDWI), Plant Senescence Reflectance Index (PSRI), and Normalized Burn Ratio (NBR). We concluded that the presented methodology enables accurate burned area mapping in Mediterranean ecosystems and may easily be automated and generalized to other ecosystems and satellite sensors.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationMediterranean ecosystemses
dc.subject.classificationEcosistemas mediterráneoses
dc.titleA synergetic approach to burned area mapping using maximum entropy modeling trained with hyperspectral data and VIIRS hotspotses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/rs12050858es
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/12/5/858es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (grant AGL2017-86075-C2-1-R)es
dc.description.projectJunta de Castilla y León (project LE001P17)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicas


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem