• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/52824

    Título
    Designing an efficient clustering strategy for combined Fog-to-Cloud scenarios
    Autor
    Asensio, Adrián
    Masip-Bruin, Xavi
    Durán Barroso, Ramón JoséAutoridad UVA Orcid
    Miguel Jiménez, Ignacio deAutoridad UVA Orcid
    Ren, Guang-Jie
    Daijavad, Shahrokh
    Jukan, Admela
    Año del Documento
    2020
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Future Generation Computer Systems, 2020, vol. 109, p. 392-406
    Abstract
    The evolution of the Internet of Things (IoT) is imposing many distinct challenges, particularly to guarantee both wide and global systems communication, and to ensure an optimal execution of services. To that end, IoT services must make the most out of both cloud and fog computing (turning into combined fog–cloud scenarios), which indeed requires novel and efficient resource management procedures to handle such diversity of resources in a coordinated way. Most of the related works that can be found in the literature focus on resource mapping for service-specific execution in fog–cloud; however, those works assume a control and management architecture already deployed. Interestingly, few works propose algorithms to set that control architecture, necessary to execute the services and effectively implement services and resource mapping. This paper addresses that challenge by solving the problem of optimal clustering of devices located at the edge of the network offering their resources to support fog computing while defining the control and management role of each of them in the architecture, in order to ensure access to management functions in combined fog–cloud​ scenarios. In particular, we set out the Fog–Cloud Clustering (FCC) problem as an optimization problem, which is based on multi-objective optimization, including realistic, novel and stringent constraints; e.g., to improve the architecture’s robustness by means of a device acting as a backup in the cluster. We model the FCC problem as a Mixed Integer Linear Programming (MILP) formulation, for which a lower and an upper bound on the number of required clusters is derived. We also propose a machine learning-based heuristic that provides scalable and near-optimal solutions in realistic scenarios in which, due to the high number of connected devices, solving the MILP formulation is not viable. By means of a simulation study, we demonstrate the effectiveness of the algorithms comparing its results with those of MILP formulation.
    Palabras Clave
    Machine learning
    Aprendizaje automático
    ISSN
    0167-739X
    Revisión por pares
    SI
    DOI
    10.1016/j.future.2020.03.056
    Patrocinador
    Spanish Thematic Networks (contracts RED2018-102585-T and TEC2015-71932-REDT)
    Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (projects RTI2018-094532-B-I00 and TEC2017-84423-C3-1-P)
    INTERREG V-A España-Portugal (POCTEP) program (project 0677_DISRUPTIVE_2_E).
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/730929
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0167739X19329541?via%3Dihub
    Propietario de los Derechos
    © 2020 Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/52824
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Designing-efficient-clustering-strategy.pdf
    Tamaño:
    567.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10