Mostrar el registro sencillo del ítem

dc.contributor.authorElvira Ortiz, David Alejandro
dc.contributor.authorJaen Cuellar, Arturo Yosimar
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.contributor.authorMorales Velázquez, Luis
dc.contributor.authorOsornio Ríos, Roque A.
dc.contributor.authorRomero Troncoso, René de Jesús
dc.date.accessioned2022-04-27T11:28:41Z
dc.date.available2022-04-27T11:28:41Z
dc.date.issued2020
dc.identifier.citationApplied Sciences, 2020, vol. 10, n. 2, 542es
dc.identifier.issn2076-3417es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/53032
dc.descriptionProducción Científicaes
dc.description.abstractRenewable generation sources like photovoltaic plants are weather dependent and it is hard to predict their behavior. This work proposes a methodology for obtaining a parameterized model that estimates the generated power in a photovoltaic generation system. The proposed methodology uses a genetic algorithm to obtain the mathematical model that best fits the behavior of the generated power through the day. Additionally, using the same methodology, a mathematical model is developed for harmonic distortion estimation that allows one to predict the produced power and its quality. Experimentation is performed using real signals from a photovoltaic system. Eight days from different seasons of the year are selected considering different irradiance conditions to assess the performance of the methodology under different environmental and electrical conditions. The proposed methodology is compared with an artificial neural network, with the results showing an improved performance when using the genetic algorithm methodology.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationGenetic algorithmses
dc.subject.classificationAlgoritmos genéticoses
dc.subject.classificationPhotovoltaic systemses
dc.subject.classificationSistema fotovoltaicoses
dc.titleGenetic algorithm methodology for the estimation of generated power and harmonic content in photovoltaic generationes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/app10020542es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/10/2/542es
dc.peerreviewedSIes
dc.description.projectCONACYT (scholarship 415315)es
dc.description.projectFOFI –UAQ 2018 (project FIN201812)es
dc.description.projectPRODEP (project UAQ-PTC-385)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem