Mostrar el registro sencillo del ítem

dc.contributor.authorÁlvarez Esteban, Pedro César 
dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.date.accessioned2022-05-16T12:30:47Z
dc.date.available2022-05-16T12:30:47Z
dc.date.issued2021
dc.identifier.citationAdvances in Data Analysis and Classification, 2021, vol. 16, n. 1, p. 181-199es
dc.identifier.issn1862-5347es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/53351
dc.descriptionProducción Científicaes
dc.description.abstractA robust approach for clustering functional directional data is proposed. The proposal adapts “impartial trimming” techniques to this particular framework. Impartial trimming uses the dataset itself to tell us which appears to be the most outlying curves. A feasible algorithm is proposed for its practical implementation justified by some theoretical properties. A “warping” approach is also introduced which allows including controlled time warping in that robust clustering procedure to detect typical “templates”. The proposed methodology is illustrated in a real data analysis problem where it is applied to cluster aircraft trajectories.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationCluster analysises
dc.subject.classificationRobustnesses
dc.subject.classificationFunctional data analysises
dc.subject.classificationDirectional dataes
dc.subject.classificationWarpinges
dc.titleRobust clustering of functional directional dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s11634-021-00482-3es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11634-021-00482-3
dc.identifier.publicationfirstpage181es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage199es
dc.identifier.publicationtitleAdvances in Data Analysis and Classificationes
dc.identifier.publicationvolume16es
dc.peerreviewedSIes
dc.description.projectCentro para el Desarrollo Tecnológico Industrial y Ministerio de Economía y Empresa (FEDER) (grant IDI-20150616, CIEN 2015)es
dc.description.projectMinisterio de Asuntos Económicos y Transformación Digital (grants MTM2017-86061-C2-1-P and MTM2017-86061-C2-2-P)es
dc.description.projectJunta de Castilla y León - Fondo Europeo de Desarrollo Regional (grants VA005P17 and VA002G18)es
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLEes
dc.identifier.essn1862-5355es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco12 Matemáticases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem