Mostrar el registro sencillo del ítem
dc.contributor.author | Álvarez Esteban, Pedro César | |
dc.contributor.author | García Escudero, Luis Ángel | |
dc.date.accessioned | 2022-05-16T12:30:47Z | |
dc.date.available | 2022-05-16T12:30:47Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Advances in Data Analysis and Classification, 2021, vol. 16, n. 1, p. 181-199 | es |
dc.identifier.issn | 1862-5347 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/53351 | |
dc.description | Producción Científica | es |
dc.description.abstract | A robust approach for clustering functional directional data is proposed. The proposal adapts “impartial trimming” techniques to this particular framework. Impartial trimming uses the dataset itself to tell us which appears to be the most outlying curves. A feasible algorithm is proposed for its practical implementation justified by some theoretical properties. A “warping” approach is also introduced which allows including controlled time warping in that robust clustering procedure to detect typical “templates”. The proposed methodology is illustrated in a real data analysis problem where it is applied to cluster aircraft trajectories. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Cluster analysis | es |
dc.subject.classification | Robustness | es |
dc.subject.classification | Functional data analysis | es |
dc.subject.classification | Directional data | es |
dc.subject.classification | Warping | es |
dc.title | Robust clustering of functional directional data | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1007/s11634-021-00482-3 | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11634-021-00482-3 | |
dc.identifier.publicationfirstpage | 181 | es |
dc.identifier.publicationissue | 1 | es |
dc.identifier.publicationlastpage | 199 | es |
dc.identifier.publicationtitle | Advances in Data Analysis and Classification | es |
dc.identifier.publicationvolume | 16 | es |
dc.peerreviewed | SI | es |
dc.description.project | Centro para el Desarrollo Tecnológico Industrial y Ministerio de Economía y Empresa (FEDER) (grant IDI-20150616, CIEN 2015) | es |
dc.description.project | Ministerio de Asuntos Económicos y Transformación Digital (grants MTM2017-86061-C2-1-P and MTM2017-86061-C2-2-P) | es |
dc.description.project | Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (grants VA005P17 and VA002G18) | es |
dc.description.project | Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE | es |
dc.identifier.essn | 1862-5355 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 12 Matemáticas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional