Mostrar el registro sencillo del ítem

dc.contributor.authorDeng, X.
dc.contributor.authorHasan, A.
dc.contributor.authorElsharkawy, S.
dc.contributor.authorTejeda Montes, E.
dc.contributor.authorTarakina, N.V.
dc.contributor.authorGreco, G.
dc.contributor.authorNikulina, E
dc.contributor.authorStormonth-Darling, J.M.
dc.contributor.authorConvery, N.
dc.contributor.authorRodríguez Cabello, José Carlos 
dc.contributor.authorBoyde, A.
dc.contributor.authorGadegaard, N.
dc.contributor.authorPugno, N.M.
dc.contributor.authorAl-Jawad, M.
dc.contributor.authorMata, A.
dc.date.accessioned2022-07-13T08:43:38Z
dc.date.available2022-07-13T08:43:38Z
dc.date.issued2021
dc.identifier.citationMaterials Today Bio, 2021, vol. 11, p. 100119es
dc.identifier.issn2590-0064es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/53934
dc.descriptionProducción Científicaes
dc.description.abstractMaterial platforms based on interaction between organic and inorganic phases offer enormous potential to develop materials that can recreate the structural and functional properties of biological systems. However, the capability of organic-mediated mineralizing strategies to guide mineralization with spatial control remains a major limitation. Here, we report on the integration of a protein-based mineralizing matrix with surface topog- raphies to grow spatially guided mineralized structures. We reveal how well-defined geometrical spaces defined within the organic matrix by the surface topographies can trigger subtle changes in single nanocrystal co- alignment, which are then translated to drastic changes in mineralization at the microscale and macroscale. Furthermore, through systematic modifications of the surface topographies, we demonstrate the possibility of selectively guiding the growth of hierarchically mineralized structures. We foresee that the capacity to direct the anisotropic growth of such structures would have important implications in the design of biomineralizing syn- thetic materials to repair or regenerate hard tissues.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationFluorapatitees
dc.subject.classificationHierarchical mineralizationes
dc.subject.classificationElastines
dc.subject.classificationCrystallizationes
dc.subject.classificationSurface topographieses
dc.titleTopographically guided hierarchical mineralizationes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The Author(s)es
dc.rights.holder© 2021 Elsevieres
dc.identifier.doi10.1016/j.mtbio.2021.100119es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2590006421000272es
dc.identifier.publicationfirstpage100119es
dc.identifier.publicationtitleMaterials Today Bioes
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectEuropean Union’s Horizon 2020 research and innovation program under FET Proactive ‘Neurofibres’ grant No. 732344es
dc.description.projectThe Italian Ministry of Education, University and Research (MIUR) under the ‘Departments of Excellence’ grant L.232/2016 and ARS01-01384-PROSCAN and the PRIN-20177TTP3S.es
dc.description.projectGobierno Español, (Grant/Award Numbers: PID2019-110709RB-100, RED2018-102417-T),es
dc.description.projectJunta de Castilla y León (VA317P18, Infrared2018-UVA06)es
dc.description.projectInterreg V España-Portugal POCTEP (0624_2IQBIONEURO_6_E)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/732344
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco22 Físicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem