dc.contributor.author | López Martín, Manuel | |
dc.contributor.author | Sánchez Esguevillas, Antonio Javier | |
dc.contributor.author | Hernández Callejo, Luis | |
dc.contributor.author | Arribas Sánchez, Juan Ignacio | |
dc.contributor.author | Carro Martínez, Belén | |
dc.date.accessioned | 2022-07-22T08:31:23Z | |
dc.date.available | 2022-07-22T08:31:23Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Applied Sciences, 2021, vol. 11, n. 12, p. 5708 | es |
dc.identifier.issn | 2076-3417 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/54157 | |
dc.description | Producción Científica | es |
dc.description.abstract | This work brings together and applies a large representation of the most novel forecasting
techniques, with origins and applications in other fields, to the short-term electric load forecasting
problem. We present a comparison study between different classic machine learning and deep
learning techniques and recent methods for data-driven analysis of dynamical models (dynamic
mode decomposition) and deep learning ensemble models applied to short-term load forecasting.
This work explores the influence of critical parameters when performing time-series forecasting,
such as rolling window length, k-step ahead forecast length, and number/nature of features used to
characterize the information used as predictors. The deep learning architectures considered include
1D/2D convolutional and recurrent neural networks and their combination, Seq2seq with and
without attention mechanisms, and recent ensemble models based on gradient boosting principles.
Three groups of models stand out from the rest according to the forecast scenario: (a) deep learning
ensemble models for average results, (b) simple linear regression and Seq2seq models for very
short-term forecasts, and (c) combinations of convolutional/recurrent models and deep learning
ensemble models for longer-term forecasts. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Short-term electric load forecasting | es |
dc.subject.classification | Deep learning | es |
dc.subject.classification | Machine learning | es |
dc.subject.classification | Deep learning additive ensemble model | es |
dc.subject.classification | Dynamic mode decomposition | es |
dc.title | Novel data-driven models applied to short-term electric load forecasting | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2021 The Author(s) | es |
dc.identifier.doi | 10.3390/app11125708 | es |
dc.relation.publisherversion | https://www.mdpi.com/2076-3417/11/12/5708/pdf | es |
dc.identifier.publicationfirstpage | 5708 | es |
dc.identifier.publicationissue | 12 | es |
dc.identifier.publicationtitle | Applied Sciences | es |
dc.identifier.publicationvolume | 11 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades Proyectos de I+D+i ‘‘Retos investigación’’, (grant RTI2018-098958- B-I00) | es |
dc.identifier.essn | 2076-3417 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |
dc.subject.unesco | 3325 Tecnología de las Telecomunicaciones | es |