Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Martín, Manuel
dc.contributor.authorSánchez Esguevillas, Antonio Javier
dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorArribas Sánchez, Juan Ignacio 
dc.contributor.authorCarro Martínez, Belén 
dc.date.accessioned2022-07-22T08:31:23Z
dc.date.available2022-07-22T08:31:23Z
dc.date.issued2021
dc.identifier.citationApplied Sciences, 2021, vol. 11, n. 12, p. 5708es
dc.identifier.issn2076-3417es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/54157
dc.descriptionProducción Científicaes
dc.description.abstractThis work brings together and applies a large representation of the most novel forecasting techniques, with origins and applications in other fields, to the short-term electric load forecasting problem. We present a comparison study between different classic machine learning and deep learning techniques and recent methods for data-driven analysis of dynamical models (dynamic mode decomposition) and deep learning ensemble models applied to short-term load forecasting. This work explores the influence of critical parameters when performing time-series forecasting, such as rolling window length, k-step ahead forecast length, and number/nature of features used to characterize the information used as predictors. The deep learning architectures considered include 1D/2D convolutional and recurrent neural networks and their combination, Seq2seq with and without attention mechanisms, and recent ensemble models based on gradient boosting principles. Three groups of models stand out from the rest according to the forecast scenario: (a) deep learning ensemble models for average results, (b) simple linear regression and Seq2seq models for very short-term forecasts, and (c) combinations of convolutional/recurrent models and deep learning ensemble models for longer-term forecasts.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationShort-term electric load forecastinges
dc.subject.classificationDeep learninges
dc.subject.classificationMachine learninges
dc.subject.classificationDeep learning additive ensemble modeles
dc.subject.classificationDynamic mode decompositiones
dc.titleNovel data-driven models applied to short-term electric load forecastinges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The Author(s)es
dc.identifier.doi10.3390/app11125708es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/11/12/5708/pdfes
dc.identifier.publicationfirstpage5708es
dc.identifier.publicationissue12es
dc.identifier.publicationtitleApplied Scienceses
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades Proyectos de I+D+i ‘‘Retos investigación’’, (grant RTI2018-098958- B-I00)es
dc.identifier.essn2076-3417es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem