Mostrar el registro sencillo del ítem

dc.contributor.authorEgea Gómez, Santiago
dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorCarro Martínez, Belén 
dc.contributor.authorSánchez Esguevillas, Antonio Javier
dc.date.accessioned2022-07-22T08:34:29Z
dc.date.available2022-07-22T08:34:29Z
dc.date.issued2019
dc.identifier.citationNeurocomputing, 2019, vol. 343, p. 100-119es
dc.identifier.issn0925-2312es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/54159
dc.descriptionProducción Científicaes
dc.description.abstractNetwork Traffic Classification is a fundamental component in network management, and the fast-paced advances in Machine Learning have motivated the application of learning techniques to identify network traffic. The intrinsic features of Internet networks lead to imbalanced class distributions when datasets are conformed, phenomena called Class Imbalance and that is attaching an increasing attention in many research fields. In spite of performance losses due to Class Imbalance, this issue has not been thoroughly studied in Network Traffic Classification and some previous works are limited to few solutions and/or assumed misleading methodological approaches. In this article, we deal with Class Imbalance in Network Traffic Classification, studying the presence of this phenomenon and analyzing a wide number of solutions in two different Internet environments: a lab network and a high-speed backbone. Namely, we experimented with 21 data-level algorithms, six ensemble methods and one cost-level approach. Throughout the experiments performed, we have applied the most recent methodological aspects for imbalanced problems, such as: DOB-SCV validation approach or the performance metrics assumed. And last but not least, the strategies to tune parameters and our algorithm implementations to adapt binary methods to multiclass problems are presented and shared with the research community, including two ensemble techniques used for the first time in Machine Learning to the best of our knowledge. Our experimental results reveal that some techniques mitigated Class Imbalance with interesting benefit for traffic classification models. More specifically, some algorithms reached increases greater than 8% in overall accuracy and greater than 4% in AUC-ROC for the most challenging network scenario.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationMachine learninges
dc.subject.classificationNetwork managementes
dc.subject.classificationClass Imbalancees
dc.subject.classificationNetwork traffic classificationes
dc.titleExploratory study on class imbalance and solutions for network traffic classificationes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.neucom.2018.07.091es
dc.identifier.publicationfirstpage100es
dc.identifier.publicationlastpage119es
dc.identifier.publicationtitleNeurocomputinges
dc.identifier.publicationvolume343es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad y el Fondo de Desarrollo Regional (FEDER) dentro del proyecto "Inteligencia distribuida para el control y adaptación de redes dinámicas definidas por software”, (ref: TIN2014-57991- C3-2-P)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem