• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54159

    Título
    Exploratory study on class imbalance and solutions for network traffic classification
    Autor
    Egea Gómez, Santiago
    Hernández Callejo, LuisAutoridad UVA Orcid
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Neurocomputing, 2019, vol. 343, p. 100-119
    Résumé
    Network Traffic Classification is a fundamental component in network management, and the fast-paced advances in Machine Learning have motivated the application of learning techniques to identify network traffic. The intrinsic features of Internet networks lead to imbalanced class distributions when datasets are conformed, phenomena called Class Imbalance and that is attaching an increasing attention in many research fields. In spite of performance losses due to Class Imbalance, this issue has not been thoroughly studied in Network Traffic Classification and some previous works are limited to few solutions and/or assumed misleading methodological approaches. In this article, we deal with Class Imbalance in Network Traffic Classification, studying the presence of this phenomenon and analyzing a wide number of solutions in two different Internet environments: a lab network and a high-speed backbone. Namely, we experimented with 21 data-level algorithms, six ensemble methods and one cost-level approach. Throughout the experiments performed, we have applied the most recent methodological aspects for imbalanced problems, such as: DOB-SCV validation approach or the performance metrics assumed. And last but not least, the strategies to tune parameters and our algorithm implementations to adapt binary methods to multiclass problems are presented and shared with the research community, including two ensemble techniques used for the first time in Machine Learning to the best of our knowledge. Our experimental results reveal that some techniques mitigated Class Imbalance with interesting benefit for traffic classification models. More specifically, some algorithms reached increases greater than 8% in overall accuracy and greater than 4% in AUC-ROC for the most challenging network scenario.
    Materias Unesco
    33 Ciencias Tecnológicas
    3325 Tecnología de las Telecomunicaciones
    Palabras Clave
    Machine learning
    Network management
    Class Imbalance
    Network traffic classification
    ISSN
    0925-2312
    Revisión por pares
    SI
    DOI
    10.1016/j.neucom.2018.07.091
    Patrocinador
    Ministerio de Economía y Competitividad y el Fondo de Desarrollo Regional (FEDER) dentro del proyecto "Inteligencia distribuida para el control y adaptación de redes dinámicas definidas por software”, (ref: TIN2014-57991- C3-2-P)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54159
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Exploratory-study-class-imbalance.pdf
    Tamaño:
    1.127Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10