• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54206

    Título
    Network intrusion detection with a novel hierarchy of distances between embeddings of hash IP addresses
    Autor
    López Martín, ManuelAutoridad UVA
    Carro Martínez, BelénAutoridad UVA Orcid
    Arribas Sánchez, Juan IgnacioAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Knowledge-Based Systems, 2021, vol. 219, p. 106887
    Abstract
    Including high-dimensional categorical predictors in a machine learning model is a major challenge. This is particularly appropriate for the IP and Port addresses of network connections when they are considered as predictors (features) in machine learning models. These features are particularly important for network intrusion detection, as many attacks exploit information about IP/Port addresses. The sparsity and high dimensionality of these features make it difficult their inclusion into the models, being discarded as useful information in many cases. This work proposes to replace the original network addresses by new features based on a set of distances defined between different components of the source and destination IP and Port addresses. These distances incorporate information on the probability of co-occurrence of source and destination addresses. The distances are calculated using a dense, low-dimensional vector representation (embedding) of the different network address components. The embeddings are obtained with a neural network, which requires few computational resources, plus an additional hash function that collapses the extremely large range of IP and Port values, making the model implementation feasible. A self-supervised learning framework under a hierarchical model is used to train the encoding network. The novel features can be used to predict future co-occurrence of source and destination network addresses, and, when applied as features in a supervised model, they significantly increase the prediction performance of most classifiers for the detection of network intrusions. We demonstrate this prediction improvement over two modern network intrusion datasets: CICIDS2017 and CICDDoS2019.
    Materias Unesco
    33 Ciencias Tecnológicas
    3325 Tecnología de las Telecomunicaciones
    Palabras Clave
    Hash function
    Self-supervised learning
    Neural network
    Network address embedding
    Network intrusion detection
    ISSN
    0950-7051
    Revisión por pares
    SI
    DOI
    10.1016/j.knosys.2021.106887
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades Proyectos de I+D+i ‘‘Retos investigación’’, (grant RTI2018-098958- B-I00)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54206
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Network-intrusion-detection.pdf
    Tamaño:
    1.070Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10