Mostrar el registro sencillo del ítem

dc.contributor.authorMoya Sáez, Elisa
dc.contributor.authorNavarro González, Rafael
dc.contributor.authorCepeda, Santiago
dc.contributor.authorPérez Núñez, Ángel
dc.contributor.authorLuis García, Rodrigo de 
dc.contributor.authorAja Fernández, Santiago 
dc.contributor.authorAlberola López, Carlos 
dc.date.accessioned2022-07-25T11:28:50Z
dc.date.available2022-07-25T11:28:50Z
dc.date.issued2022
dc.identifier.citationNMR in Biomedicine, 2022, Volume35, Issue 9, e4754es
dc.identifier.issn0952-3480es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/54235
dc.descriptionProducción Científicaes
dc.description.abstractGlioblastoma is an aggressive and fast-growing brain tumor with poor prognosis. Predicting the expected survival of patients with glioblastoma is a key task for efficient treatment and surgery planning. Survival predictions could be enhanced by means of a radiomic system. However, these systems demand high numbers of multicontrast images, the acquisitions of which are time consuming, giving rise to patient discomfort and low healthcare system efficiency. Synthetic MRI could favor deployment of radiomic systems in the clinic by allowing practitioners not only to reduce acquisition time, but also to retrospectively complete databases or to replace artifacted images. In this work we analyze the replacement of an actually acquired MR weighted image by a synthesized version to predict survival of glioblastoma patients with a radiomic system. Each synthesized version was realistically generated from two acquired images with a deep learning synthetic MRI approach based on a convolutional neural network. Specifically, two weighted images were considered for the replacement one at a time, a T2w and a FLAIR, which were synthesized from the pairs T1w and FLAIR, and T1w and T2w, respectively. Furthermore, a radiomic system for survival prediction, which can classify patients into two groups (survival >480 days and 480 days), was built. Results show that the radiomic system fed with the synthesized image achieves similar performance compared with using the acquired one, and better performance than a model that does not include this image. Hence, our results confirm that synthetic MRI does add to glioblastoma survival prediction within a radiomics-based approach.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWileyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationGlioblastomaes
dc.subject.classificationSynthetic MRIes
dc.subject.classificationRadiomicses
dc.subject.classificationSurvival predictiones
dc.titleSynthetic MRI improves radiomics‐based glioblastoma survival predictiones
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Author(s)es
dc.identifier.doi10.1002/nbm.4754es
dc.relation.publisherversionhttps://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4754es
dc.identifier.publicationtitleNMR in Biomedicinees
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (research grants RTI 2018-094569-B-I00, PRE2019-089176 y PID2020-115339RB-I0)es
dc.description.projectAsociación Española Contra el Cáncer (subvención PRDVL19001MOYA)es
dc.identifier.essn1099-1492es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem