• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54235

    Título
    Synthetic MRI improves radiomics‐based glioblastoma survival prediction
    Autor
    Moya Saez, ElisaAutoridad UVA Orcid
    Navarro González, Rafael
    Cepeda, Santiago
    Pérez Núñez, Ángel
    Luis García, Rodrigo deAutoridad UVA Orcid
    Aja Fernández, SantiagoAutoridad UVA Orcid
    Alberola López, CarlosAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    NMR in Biomedicine, 2022, Volume35, Issue 9, e4754
    Resumen
    Glioblastoma is an aggressive and fast-growing brain tumor with poor prognosis. Predicting the expected survival of patients with glioblastoma is a key task for efficient treatment and surgery planning. Survival predictions could be enhanced by means of a radiomic system. However, these systems demand high numbers of multicontrast images, the acquisitions of which are time consuming, giving rise to patient discomfort and low healthcare system efficiency. Synthetic MRI could favor deployment of radiomic systems in the clinic by allowing practitioners not only to reduce acquisition time, but also to retrospectively complete databases or to replace artifacted images. In this work we analyze the replacement of an actually acquired MR weighted image by a synthesized version to predict survival of glioblastoma patients with a radiomic system. Each synthesized version was realistically generated from two acquired images with a deep learning synthetic MRI approach based on a convolutional neural network. Specifically, two weighted images were considered for the replacement one at a time, a T2w and a FLAIR, which were synthesized from the pairs T1w and FLAIR, and T1w and T2w, respectively. Furthermore, a radiomic system for survival prediction, which can classify patients into two groups (survival >480 days and 480 days), was built. Results show that the radiomic system fed with the synthesized image achieves similar performance compared with using the acquired one, and better performance than a model that does not include this image. Hence, our results confirm that synthetic MRI does add to glioblastoma survival prediction within a radiomics-based approach.
    Materias Unesco
    32 Ciencias Médicas
    33 Ciencias Tecnológicas
    Palabras Clave
    Glioblastoma
    Synthetic MRI
    Radiomics
    Survival prediction
    ISSN
    0952-3480
    Revisión por pares
    SI
    DOI
    10.1002/nbm.4754
    Patrocinador
    Ministerio de Ciencia e Innovación (research grants RTI 2018-094569-B-I00, PRE2019-089176 y PID2020-115339RB-I0)
    Asociación Española Contra el Cáncer (subvención PRDVL19001MOYA)
    Version del Editor
    https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4754
    Propietario de los Derechos
    © 2022 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54235
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Synthetic-MRI-improves-radiomics-based.pdf
    Tamaño:
    2.165Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10