Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Martín, Manuel
dc.contributor.authorNevado, Ángel
dc.contributor.authorCarro Martínez, Belén 
dc.date.accessioned2022-07-26T10:52:09Z
dc.date.available2022-07-26T10:52:09Z
dc.date.issued2020
dc.identifier.citationArtificial Intelligence in Medicine Volume 107, 2020, 101924es
dc.identifier.issn0933-3657es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/54263
dc.descriptionProducción Científicaes
dc.description.abstractThe early detection of Alzheimer’s disease can potentially make eventual treatments more effective. This work presents a deep learning model to detect early symptoms of Alzheimer’s disease using synchronization measures obtained with magnetoencephalography. The proposed model is a novel deep learning architecture based on an ensemble of randomized blocks formed by a sequence of 2D-convolutional, batch-normalization and pooling layers. An important challenge is to avoid overfitting, as the number of features is very high (25755) compared to the number of samples (132 patients). To address this issue the model uses an ensemble of identical sub-models all sharing weights, with a final stage that performs an average across sub-models. To facilitate the exploration of the feature space, each sub-model receives a random permutation of features. The features correspond to magnetic signals reflecting neural activity and are arranged in a matrix structure interpreted as a 2D image that is processed by 2D convolutional networks. The proposed detection model is a binary classifier (disease/non-disease), which compared to other deep learning architectures and classic machine learning classifiers, such as random forest and support vector machine, obtains the best classification performance results with an average F1-score of 0.92. To perform the comparison a strict validation procedure is proposed, and a thorough study of results is provided.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationNeural networkes
dc.subject.classificationRed neuronales
dc.subject.classificationAlzheimeres
dc.subject.classificationMagnetoencephalographyes
dc.titleDetection of early stages of Alzheimer’s disease based on MEG activity with a randomized convolutional neural networkes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 Elsevieres
dc.identifier.doi10.1016/j.artmed.2020.101924es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0933365720300749?via%3Dihub#!es
dc.identifier.publicationfirstpage101924es
dc.identifier.publicationtitleArtificial Intelligence in Medicinees
dc.identifier.publicationvolume107es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (Project PSI2015-68793-C3-1-R)es
dc.description.projectMinisterio de Ciencia e Innovación (Project RTI2018-098958-B-I00)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco2490 Neurocienciases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem