• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54273

    Título
    Neural network architecture based on gradient boosting for IoT traffic prediction
    Autor
    López Martín, ManuelAutoridad UVA
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Future Generation Computer Systems Volume 100, 2019, Pages 656-673
    Resumen
    Network traffic forecasting is an operational and management function that is critical for any data network. It is even more important for IoT networks given the number of connected elements and the real-time nature of many connections. This work presents a novel deep learning architecture applicable to this supervised regression problem. It is based on an additive network model formed by ‘learning blocks’ that are stacked iteratively following, in part, the principles of gradient boosting models. The resulting architecture is trained end-to-end using stochastic gradient descent. This new architecture has connections with residual, stacked and boosted networks, being different from any of them. Like residual networks, it shows excellent convergence behavior during training and allows for deeper models. It has a regularization effect similar to stacked models and presents excellent prediction results as gradient boosting models do. The building elements of the architecture are neural network blocks or learning blocks, that can be constituted by a sequence of simple fully connected layers or by more elaborate dispositions of recurrent and convolutional layers. The resulting architecture is a generic additive network (gaNet) applicable to any supervised regression problem. To obtain experimental results on a hard prediction problem, the model is applied to the forecasting of network traffic using IoT traffic volume real data from a mobile operator. The paper presents a comprehensive comparison of results between the proposed new model and many alternative algorithms, showing important improvements in terms of prediction performance metrics and training/prediction processing times.
    Materias (normalizadas)
    Seguridad informática
    Materias Unesco
    3325 Tecnología de las Telecomunicaciones
    Palabras Clave
    Neural network
    Red neuronal
    IoT traffic prediction
    Predicción de tráfico IoT
    ISSN
    0167-739X
    Revisión por pares
    SI
    DOI
    10.1016/j.future.2019.05.060
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0167739X19310064
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54273
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Neural-network-architecture- gradient-preprint.pdf
    Tamaño:
    1.322Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10