• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54303

    Título
    Shallow neural network with kernel approximation for prediction problems in highly demanding data networks
    Autor
    López Martín, ManuelAutoridad UVA
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Lloret, Jaime
    Año del Documento
    2019
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Expert Systems with Applications Volume 124, 2019, Pages 196-208
    Resumen
    Intrusion detection and network traffic classification are two of the main research applications of machine learning to highly demanding data networks e.g. IoT/sensors networks. These applications present new prediction challenges and strict requirements to the models applied for prediction. The models must be fast, accurate, flexible and capable of managing large datasets. They must be fast at the training, but mainly at the prediction phase, since inevitable environment changes require constant periodic training, and real-time prediction is mandatory. The models need to be accurate due to the consequences of prediction errors. They need also to be flexible and able to detect complex behaviors, usually encountered in non-linear models and, finally, training and prediction datasets are usually large due to traffic volumes. These requirements present conflicting solutions, between fast and simple shallow linear models and the slower and richer non-linear and deep learning models. Therefore, the perfect solution would be a mixture of both worlds. In this paper, we present such a solution made of a shallow neural network with linear activations plus a feature transformation based on kernel approximation algorithms which provide the necessary richness and non-linear behavior to the whole model. We have studied several kernel approximation algorithms: Nystrom, Random Fourier Features and Fastfood transformation and have applied them to three datasets related to intrusion detection and network traffic classification. This work presents the first application of a shallow linear model plus a kernel approximation to prediction problems with highly demanding network requirements. We show that the prediction performance obtained by these algorithms is positioned in the same range as the best non-linear classifiers, with a significant reduction in computational times, making them appropriate for new highly demanding networks.
    Materias Unesco
    3325 Tecnología de las Telecomunicaciones
    Palabras Clave
    Intrusion detection
    Detección de intrusos
    Shallow neural network
    Red neuronal superficial
    ISSN
    0957-4174
    Revisión por pares
    SI
    DOI
    10.1016/j.eswa.2019.01.063
    Patrocinador
    Ministerio de Economía y Competitividad (Project TIN2014-57991-C3-2-P)
    Ministerio de Economía y Competitividad (Project TIN2014-57991-C3-1-P)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0957417419300843#ack0001
    Propietario de los Derechos
    © 2020 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54303
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Shallow-neural-network-kernel_preprint.pdf
    Tamaño:
    663.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10