Mostrar el registro sencillo del ítem
dc.contributor.author | Menchón Lara, Rosa María | |
dc.contributor.author | Simmross Wattenberg, Federico Jesús | |
dc.contributor.author | Rodríguez Cayetano, Manuel | |
dc.contributor.author | Casaseca de la Higuera, Juan Pablo | |
dc.contributor.author | Martín Fernández, Miguel Angel | |
dc.contributor.author | Alberola López, Carlos | |
dc.date.accessioned | 2022-09-23T07:04:37Z | |
dc.date.available | 2022-09-23T07:04:37Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Signal Processing, 2023, vol. 202, 108771 | es |
dc.identifier.issn | 0165-1684 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/55594 | |
dc.description | Producción Científica | es |
dc.description.abstract | This paper proposes a complete convolutional formulation for 2D multimodal pairwise image registration problems based on free-form deformations. We have reformulated in terms of discrete 1D convolutions the evaluation of spatial transformations, the regularization term, and their gradients for three different multimodal registration metrics, namely, normalized cross correlation, mutual information, and normalized mutual information. A sufficient condition on the metric gradient is provided for further extension to other metrics. The proposed approach has been tested, as a proof of concept, on contrast-enhanced first-pass perfusion cardiac magnetic resonance images. Execution times have been compared with the corresponding execution times of the classical tensor product formulation, both on CPU and GPU. The speed-up achieved by using convolutions instead of tensor products depends on the image size and the number of control points considered, the larger those magnitudes, the greater the execution time reduction. Furthermore, the speed-up will be more significant when gradient operations constitute the major bottleneck in the optimization process. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Multimodal registration | es |
dc.subject | Registro multimodal | es |
dc.subject | Convolution | es |
dc.subject | Convolución | es |
dc.subject | Non-rigid registration | es |
dc.subject | Registro no rígido | es |
dc.title | Efficient convolution-based pairwise elastic image registration on three multimodal similarity metrics | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.1016/j.sigpro.2022.108771 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0165168422003103?via%3Dihub | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad (grants TEC2017-82408-R and PID2020-115339RB-I00) | es |
dc.description.project | ESAOTE Ltd (grant 18IQBM) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3325 Tecnología de las Telecomunicaciones | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional