Mostrar el registro sencillo del ítem

dc.contributor.authorMenchón Lara, Rosa María
dc.contributor.authorSimmross Wattenberg, Federico Jesús 
dc.contributor.authorRodríguez Cayetano, Manuel 
dc.contributor.authorCasaseca de la Higuera, Juan Pablo 
dc.contributor.authorMartín Fernández, Miguel Angel 
dc.contributor.authorAlberola López, Carlos 
dc.date.accessioned2022-09-23T07:04:37Z
dc.date.available2022-09-23T07:04:37Z
dc.date.issued2023
dc.identifier.citationSignal Processing, 2023, vol. 202, 108771es
dc.identifier.issn0165-1684es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/55594
dc.descriptionProducción Científicaes
dc.description.abstractThis paper proposes a complete convolutional formulation for 2D multimodal pairwise image registration problems based on free-form deformations. We have reformulated in terms of discrete 1D convolutions the evaluation of spatial transformations, the regularization term, and their gradients for three different multimodal registration metrics, namely, normalized cross correlation, mutual information, and normalized mutual information. A sufficient condition on the metric gradient is provided for further extension to other metrics. The proposed approach has been tested, as a proof of concept, on contrast-enhanced first-pass perfusion cardiac magnetic resonance images. Execution times have been compared with the corresponding execution times of the classical tensor product formulation, both on CPU and GPU. The speed-up achieved by using convolutions instead of tensor products depends on the image size and the number of control points considered, the larger those magnitudes, the greater the execution time reduction. Furthermore, the speed-up will be more significant when gradient operations constitute the major bottleneck in the optimization process.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMultimodal registrationes
dc.subjectRegistro multimodales
dc.subjectConvolutiones
dc.subjectConvoluciónes
dc.subjectNon-rigid registrationes
dc.subjectRegistro no rígidoes
dc.titleEfficient convolution-based pairwise elastic image registration on three multimodal similarity metricses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.1016/j.sigpro.2022.108771es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0165168422003103?via%3Dihubes
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (grants TEC2017-82408-R and PID2020-115339RB-I00)es
dc.description.projectESAOTE Ltd (grant 18IQBM)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3325 Tecnología de las Telecomunicacioneses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem