Mostrar el registro sencillo del ítem
dc.contributor.author | Jiménez García, Jorge | |
dc.contributor.author | García, María | |
dc.contributor.author | Gutiérrez Tobal, Gonzalo César | |
dc.contributor.author | Kheirandish Gozal, Leila | |
dc.contributor.author | Vaquerizo Villar, Fernando | |
dc.contributor.author | Álvarez, Daniel | |
dc.contributor.author | Campo Matias, Félix del | |
dc.contributor.author | Gozal, David | |
dc.contributor.author | Hornero Sánchez, Roberto | |
dc.date.accessioned | 2022-09-23T12:32:21Z | |
dc.date.available | 2022-09-23T12:32:21Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Computers in Biology and Medicine, 2022, vol. 147, 105784 | es |
dc.identifier.issn | 0010-4825 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/55620 | |
dc.description | Producción Científica | es |
dc.description.abstract | The gold standard approach to diagnose obstructive sleep apnea (OSA) in children is overnight in-lab polysomnography (PSG), which is labor-intensive for clinicians and onerous to healthcare systems and families. Simplification of PSG should enhance availability and comfort, and reduce complexity and waitlists. Airflow (AF) and oximetry (SpO2) signals summarize most of the information needed to detect apneas and hypopneas, but automatic analysis of these signals using deep-learning algorithms has not been extensively investigated in the pediatric context. The aim of this study was to evaluate a convolutional neural network (CNN) architecture based on these two signals to estimate the severity of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood Adenotonsillectomy Trial (CHAT) database (1638 recordings), as well as from a clinical database (974 recordings), were analyzed. A 2D CNN fed with AF and SpO2 signals was implemented to estimate the number of apneic events, and the total apnea-hypopnea index (AHI) was estimated. A training-validation-test strategy was used to train the CNN, adjust the hyperparameters, and assess the diagnostic ability of the algorithm, respectively. Classification into four OSA severity levels (no OSA, mild, moderate, or severe) reached 4-class accuracy and Cohen's Kappa of 72.55% and 0.6011 in the CHAT test set, and 61.79% and 0.4469 in the clinical dataset, respectively. Binary classification accuracy using AHI cutoffs 1, 5 and 10 events/h ranged between 84.64% and 94.44% in CHAT, and 84.10%–90.26% in the clinical database. The proposed CNN-based architecture achieved high diagnostic ability in two independent databases, outperforming previous approaches that employed SpO2 signals alone, or other classical feature-engineering approaches. Therefore, analysis of AF and SpO2 signals using deep learning can be useful to deploy reliable computer-aided diagnostic tools for childhood OSA. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Obstructive sleep apnea | es |
dc.subject.classification | Apnea obstructiva del sueño | es |
dc.subject.classification | Airflow | es |
dc.subject.classification | Flujo aéreo | es |
dc.subject.classification | Oximetry | es |
dc.subject.classification | Oximetría | es |
dc.title | A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.1016/j.compbiomed.2022.105784 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0010482522005510?via%3Dihub | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (project 10.13039/501100011033) | es |
dc.description.project | Fondo Europeo de Desarrollo Regional - Unión Europea (projects PID2020-115468RB-I00 and PDC2021-120775-I00) | es |
dc.description.project | Sociedad Española de Neumología y Cirugía Torácica (project 649/2018) | es |
dc.description.project | Sociedad Española de Sueño (project Beca de Investigación SES 2019) | es |
dc.description.project | Consorcio Centro de Investigación Biomédica en Red - Instituto de Salud Carlos III - Ministerio de Ciencia, Innovación y Universidades (project CB19/01/00012) | es |
dc.description.project | National Institutes of Health (projects HL083075, HL083129, UL1-RR-024134 and UL1 RR024989) | es |
dc.description.project | National Heart, Lung, and Blood Institute (projects R24 HL114473 and 75N92019R002) | es |
dc.description.project | Ministerio de Educación, Cultura y Deporte (grant FPU16/02938) | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación - Fondo Social Europeo (grant RYC2019-028566-I) | es |
dc.description.project | National Institutes of Health (grants HL130984, HL140548, and AG061824) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional