Mostrar el registro sencillo del ítem

dc.contributor.authorQuintano Pastor, María del Carmen 
dc.contributor.authorFernández Manso, Alfonso
dc.contributor.authorCalvo, Leonor
dc.contributor.authorRoberts, Dar A.
dc.date.accessioned2022-10-06T09:23:24Z
dc.date.available2022-10-06T09:23:24Z
dc.date.issued2019
dc.identifier.citationRemote Sensing, 2019, vol. 11, n. 15, 1832es
dc.identifier.issn2072-4292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/55854
dc.descriptionProducción Científicaes
dc.description.abstractForest managers demand reliable tools to evaluate post-fire vegetation and soil damage. In this study, we quantify wildfire damage to vegetation and soil based on the analysis of burn severity, using multitemporal and multispectral satellite data and species distribution models, particularly maximum entropy (MaxEnt). We studied a mega-wildfire (9000 ha burned) in North-Western Spain, which occurred from 21 to 27 August 2017. Burn severity was measured in the field using the composite burn index (CBI). Burn severity of vegetation and soil layers (CBIveg and CBIsoil) was also differentiated. MaxEnt provided the relative contribution of each pre-fire and post-fire input variable on low, moderate and high burn severity levels, as well as on all severity levels combined (burned area). In addition, it built continuous suitability surfaces from which the burned surface area and burn severity maps were built. The burned area map achieved a high accuracy level (κ = 0.85), but slightly lower accuracy when differentiating the three burn severity classes (κ = 0.81). When the burn severity map was validated using field CBIveg and CBIsoil values we reached lower κ statistic values (0.76 and 0.63, respectively). This study revealed the effectiveness of the proposed multi-temporal MaxEnt based method to map fire damage accurately in Mediterranean ecosystems, providing key information to forest managers.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleVegetation and soil fire damage analysis based on species distribution modeling trained with multispectral satellite dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2019 The Authorses
dc.identifier.doi10.3390/rs11151832es
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/11/15/1832es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (project 559 AGL2017-86075-C2-1-R)es
dc.description.projectJunta de Castilla y León (project LE001P17)es
dc.description.projectMinisterio de Educación, Cultura y Deporte (grants PRX17/00234 and PRX17/00133)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem