• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55863

    Título
    Potato yield prediction using machine learning techniques and Sentinel 2 data
    Autor
    Gómez Aragón, Diego
    Salvador González, PabloAutoridad UVA Orcid
    Sanz Justo, María JuliaAutoridad UVA Orcid
    Casanova Roque, José LuisAutoridad UVA
    Año del Documento
    2019
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Remote Sensing, 2019, vol. 11, n. 15, 1745
    Resumen
    Traditional potato growth models evidence certain limitations, such as the cost of obtaining the input data required to run the models, the lack of spatial information in some instances, or the actual quality of input data. In order to address these issues, we develop a model to predict potato yield using satellite remote sensing. In an effort to offer a good predictive model that improves the state of the art on potato precision agriculture, we use images from the twin Sentinel 2 satellites (European Space Agency—Copernicus Programme) over three growing seasons, applying different machine learning models. First, we fitted nine machine learning algorithms with various pre-processing scenarios using variables from July, August and September based on the red, red-edge and infra-red bands of the spectrum. Second, we selected the best performing models and evaluated them against independent test data. Finally, we repeated the previous two steps using only variables corresponding to July and August. Our results showed that the feature selection step proved vital during data pre-processing in order to reduce multicollinearity among predictors. The Regression Quantile Lasso model (11.67% Root Mean Square Error, RMSE; R2 = 0.88 and 9.18% Mean Absolute Error, MAE) and Leap Backwards model (10.94% RMSE, R2 = 0.89 and 8.95% MAE) performed better when predictors with a correlation coefficient > 0.5 were removed from the dataset. In contrast, the Support Vector Machine Radial (svmRadial) performed better with no feature selection method (11.7% RMSE, R2 = 0.93 and 8.64% MAE). In addition, we used a random forest model to predict potato yields in Castilla y León (Spain) 1–2 months prior to harvest, and obtained satisfactory results (11.16% RMSE, R2 = 0.89 and 8.71% MAE). These results demonstrate the suitability of our models to predict potato yields in the region studied.
    Palabras Clave
    Machine learning
    Aprendizaje automático
    Potato yield
    Potato yield
    Patata - Cultivo
    Precision agriculture
    Agricultura de precisión
    Satellite remote sensing
    Teledetección satelital
    ISSN
    2072-4292
    Revisión por pares
    SI
    DOI
    10.3390/rs11151745
    Version del Editor
    https://www.mdpi.com/2072-4292/11/15/1745
    Propietario de los Derechos
    © 2019 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/55863
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP31 - Artículos de revista [166]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Potato-yield-prediction.pdf
    Tamaño:
    4.292Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10