• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía
    • DEP32 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55875

    Título
    Micronization as a solution for enhancing the thermal insulation of nanocellular poly(methyl-methacrylate) (PMMA)
    Autor
    Sánchez Calderón, Ismael
    Bernardo García, VictoriaAutoridad UVA
    Cuadra Rodríguez, Daniel
    Martín de León, JuditAutoridad UVA
    Rodríguez Pérez, Miguel ÁngelAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Polymer, 2022, vol. 261, 125397
    Abstract
    This work shows a route to reduce the thermal conductivity of nanocellular poly(methyl-methacrylate) (PMMA). This approach is based on micronizing to replace the continuous solid phase by a discontinuous one. PMMA powders with densities of 147–195 kg/m3, formed by particles of 100 microns with nanometric cells inside them, are produced by milling. Micronization allows increasing the overall porosity maintaining the cell size. Results prove that after milling it is possible to obtain open cell nanoporous PMMA powders with thermal conductivity below that of the bulk materials (15% reduction). The reduction is not only due to a density decrease, but a result of the new structure of the powder material. The discontinuity of the solid phase and the increase in radiation extinction are the key factors allowing this improvement. This route is confirmed as a promising alternative to enhance the performance of nanocellular polymers.
    Palabras Clave
    Thermal conductivity
    Conductividad térmica
    Poly(methyl-methacrylate)
    Polimetilmetacrilato
    Nanocellular polymers
    Polímeros nanocelulares
    ISSN
    0032-3861
    Revisión por pares
    SI
    DOI
    10.1016/j.polymer.2022.125397
    Patrocinador
    Junta de Castilla y Leon (grant VA202P20)
    Ministerio de Ciencia, Innovación y Universidades (projects RTI2018-098749-B-I00, PTQ2019-010560 and PRE2019-088820)
    Instituto para la Competitividad Empresarial de Castilla y León - Fondo Europeo de Desarrollo Regional (projects PAVIPEX. 04/18/VA/008 and FICACEL. 11/20/VA/0001)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0032386122008850?via%3Dihub
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/55875
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP32 - Artículos de revista [164]
    Show full item record
    Files in this item
    Nombre:
    Micronization-solution.pdf
    Tamaño:
    8.415Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Comentarios

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10