Mostrar el registro sencillo del ítem
dc.contributor.author | Maturana Candelas, Aarón | |
dc.contributor.author | Gómez Peña, Carlos | |
dc.contributor.author | Poza Crespo, Jesús | |
dc.contributor.author | Pinto, Nádia | |
dc.contributor.author | Hornero Sánchez, Roberto | |
dc.date.accessioned | 2022-10-18T09:00:54Z | |
dc.date.available | 2022-10-18T09:00:54Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Entropy, 2019, vol. 21, n. 6, 544 | es |
dc.identifier.issn | 1099-4300 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/55986 | |
dc.description | Producción Científica | es |
dc.description.abstract | Alzheimer’s disease (AD) is a neurodegenerative disorder with high prevalence, known for its highly disabling symptoms. The aim of this study was to characterize the alterations in the irregularity and the complexity of the brain activity along the AD continuum. Both irregularity and complexity can be studied applying entropy-based measures throughout multiple temporal scales. In this regard, multiscale sample entropy (MSE) and refined multiscale spectral entropy (rMSSE) were calculated from electroencephalographic (EEG) data. Five minutes of resting-state EEG activity were recorded from 51 healthy controls, 51 mild cognitive impaired (MCI) subjects, 51 mild AD patients (ADMIL), 50 moderate AD patients (ADMOD), and 50 severe AD patients (ADSEV). Our results show statistically significant differences (p-values < 0.05, FDR-corrected Kruskal–Wallis test) between the five groups at each temporal scale. Additionally, average slope values and areas under MSE and rMSSE curves revealed significant changes in complexity mainly for controls vs. MCI, MCI vs. ADMIL and ADMOD vs. ADSEV comparisons (p-values < 0.05, FDR-corrected Mann–Whitney U-test). These findings indicate that MSE and rMSSE reflect the neuronal disturbances associated with the development of dementia, and may contribute to the development of new tools to track the AD progression. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Electroencephalography | es |
dc.subject.classification | Electroencefalografía | es |
dc.subject.classification | Alzheimer’s disease | es |
dc.subject.classification | Alzheimer, Enfermedad de | es |
dc.title | EEG characterization of the Alzheimer’s disease continuum by means of multiscale entropies | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2019 The Authors | es |
dc.identifier.doi | 10.3390/e21060544 | es |
dc.relation.publisherversion | https://www.mdpi.com/1099-4300/21/6/544 | es |
dc.peerreviewed | SI | es |
dc.description.project | Comisión Europea - Fondo Europeo de Desarrollo Regional (project POCTEP 2014-2020) | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (projects PGC2018-098214-A-I00 and DPI2017-84280-R) | es |
dc.description.project | Fundação para a Ciência e a Tecnologia / Ministério da Ciência, Tecnologia e Inovação - Fondo Europeo de Desarrollo Regional (projects POCI-01-0145-FEDER-007274 and UID/MAT/00144/2013) | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional