Mostrar el registro sencillo del ítem

dc.contributor.authorRomero Oraa, Roberto 
dc.contributor.authorJiménez García, Jorge
dc.contributor.authorGarcía Gadañón, María 
dc.contributor.authorLópez Gálvez, María Isabel 
dc.contributor.authorOraá Pérez, Javier
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2022-10-19T11:24:21Z
dc.date.available2022-10-19T11:24:21Z
dc.date.issued2019
dc.identifier.citationEntropy, 2019, vol. 21, n. 4, 417es
dc.identifier.issn1099-4300es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/56010
dc.descriptionProducción Científicaes
dc.description.abstractDiabetic retinopathy (DR) is the main cause of blindness in the working-age population in developed countries. Digital color fundus images can be analyzed to detect lesions for large-scale screening. Thereby, automated systems can be helpful in the diagnosis of this disease. The aim of this study was to develop a method to automatically detect red lesions (RLs) in retinal images, including hemorrhages and microaneurysms. These signs are the earliest indicators of DR. Firstly, we performed a novel preprocessing stage to normalize the inter-image and intra-image appearance and enhance the retinal structures. Secondly, the Entropy Rate Superpixel method was used to segment the potential RL candidates. Then, we reduced superpixel candidates by combining inaccurately fragmented regions within structures. Finally, we classified the superpixels using a multilayer perceptron neural network. The used database contained 564 fundus images. The DB was randomly divided into a training set and a test set. Results on the test set were measured using two different criteria. With a pixel-based criterion, we obtained a sensitivity of 81.43% and a positive predictive value of 86.59%. Using an image-based criterion, we reached 84.04% sensitivity, 85.00% specificity and 84.45% accuracy. The algorithm was also evaluated on the DiaretDB1 database. The proposed method could help specialists in the detection of RLs in diabetic patients.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationDiabetic retinopathyes
dc.subject.classificationRetinopatía diabéticaes
dc.subject.classificationEntropyes
dc.subject.classificationEntropíaes
dc.titleEntropy rate superpixel classification for automatic red lesion detection in fundus imageses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2019 The Authorses
dc.identifier.doi10.3390/e21040417es
dc.relation.publisherversionhttps://www.mdpi.com/1099-4300/21/4/417es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (projects DPI2017-84280-R and RTC-2015-3467-1)es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem