Mostrar el registro sencillo del ítem
dc.contributor.author | Romero Oraa, Roberto | |
dc.contributor.author | Jiménez García, Jorge | |
dc.contributor.author | García Gadañón, María | |
dc.contributor.author | López Gálvez, María Isabel | |
dc.contributor.author | Oraá Pérez, Javier | |
dc.contributor.author | Hornero Sánchez, Roberto | |
dc.date.accessioned | 2022-10-19T11:24:21Z | |
dc.date.available | 2022-10-19T11:24:21Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Entropy, 2019, vol. 21, n. 4, 417 | es |
dc.identifier.issn | 1099-4300 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/56010 | |
dc.description | Producción Científica | es |
dc.description.abstract | Diabetic retinopathy (DR) is the main cause of blindness in the working-age population in developed countries. Digital color fundus images can be analyzed to detect lesions for large-scale screening. Thereby, automated systems can be helpful in the diagnosis of this disease. The aim of this study was to develop a method to automatically detect red lesions (RLs) in retinal images, including hemorrhages and microaneurysms. These signs are the earliest indicators of DR. Firstly, we performed a novel preprocessing stage to normalize the inter-image and intra-image appearance and enhance the retinal structures. Secondly, the Entropy Rate Superpixel method was used to segment the potential RL candidates. Then, we reduced superpixel candidates by combining inaccurately fragmented regions within structures. Finally, we classified the superpixels using a multilayer perceptron neural network. The used database contained 564 fundus images. The DB was randomly divided into a training set and a test set. Results on the test set were measured using two different criteria. With a pixel-based criterion, we obtained a sensitivity of 81.43% and a positive predictive value of 86.59%. Using an image-based criterion, we reached 84.04% sensitivity, 85.00% specificity and 84.45% accuracy. The algorithm was also evaluated on the DiaretDB1 database. The proposed method could help specialists in the detection of RLs in diabetic patients. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Diabetic retinopathy | es |
dc.subject.classification | Retinopatía diabética | es |
dc.subject.classification | Entropy | es |
dc.subject.classification | Entropía | es |
dc.title | Entropy rate superpixel classification for automatic red lesion detection in fundus images | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2019 The Authors | es |
dc.identifier.doi | 10.3390/e21040417 | es |
dc.relation.publisherversion | https://www.mdpi.com/1099-4300/21/4/417 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (projects DPI2017-84280-R and RTC-2015-3467-1) | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional