Mostrar el registro sencillo del ítem
dc.contributor.author | Pitarch Pérez, José Luis | |
dc.contributor.author | Sala, Antonio | |
dc.contributor.author | Prada Moraga, César de | |
dc.date.accessioned | 2022-10-19T12:26:31Z | |
dc.date.available | 2022-10-19T12:26:31Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Processes, 2019, vol. 7, n. 3, 170 | es |
dc.identifier.issn | 2227-9717 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/56016 | |
dc.description | Producción Científica | es |
dc.description.abstract | Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This allows the engineer to transfer the available process knowledge into a model. However, there is still a lack of a flexible but systematic methodology for grey-box modeling which ensures certain coherence of the experimental sub-models with the process physics. This paper proposes such a methodology based in data reconciliation (DR) and polynomial constrained regression. A nonlinear optimization of limited complexity is to be solved in the DR stage, whereas the proposed constrained regression is based in sum-of-squares (SOS) convex programming. It is shown how several desirable features on the polynomial regressors can be naturally enforced in this optimization framework. The goodnesses of the proposed methodology are illustrated through: (1) an academic example and (2) an industrial evaporation plant with real experimental data. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Machine learning | es |
dc.subject.classification | Aprendizaje automático | es |
dc.subject.classification | Process modeling | es |
dc.subject.classification | Modelado de procesos | es |
dc.title | A systematic grey-box modeling methodology via data reconciliation and SOS constrained regression | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2019 The Authors | es |
dc.identifier.doi | 10.3390/pr7030170 | es |
dc.relation.publisherversion | https://www.mdpi.com/2227-9717/7/3/170 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad (grant DPI2016-81002-R) | es |
dc.description.project | European Union’s Horizon 2020 research and innovation program. grant agreement no 723575 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/723575 | |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional