Mostrar el registro sencillo del ítem

dc.contributor.authorPitarch Pérez, José Luis 
dc.contributor.authorSala, Antonio
dc.contributor.authorPrada Moraga, César de 
dc.date.accessioned2022-10-19T12:26:31Z
dc.date.available2022-10-19T12:26:31Z
dc.date.issued2019
dc.identifier.citationProcesses, 2019, vol. 7, n. 3, 170es
dc.identifier.issn2227-9717es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/56016
dc.descriptionProducción Científicaes
dc.description.abstractDeveloping the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This allows the engineer to transfer the available process knowledge into a model. However, there is still a lack of a flexible but systematic methodology for grey-box modeling which ensures certain coherence of the experimental sub-models with the process physics. This paper proposes such a methodology based in data reconciliation (DR) and polynomial constrained regression. A nonlinear optimization of limited complexity is to be solved in the DR stage, whereas the proposed constrained regression is based in sum-of-squares (SOS) convex programming. It is shown how several desirable features on the polynomial regressors can be naturally enforced in this optimization framework. The goodnesses of the proposed methodology are illustrated through: (1) an academic example and (2) an industrial evaporation plant with real experimental data.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationMachine learninges
dc.subject.classificationAprendizaje automáticoes
dc.subject.classificationProcess modelinges
dc.subject.classificationModelado de procesoses
dc.titleA systematic grey-box modeling methodology via data reconciliation and SOS constrained regressiones
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2019 The Authorses
dc.identifier.doi10.3390/pr7030170es
dc.relation.publisherversionhttps://www.mdpi.com/2227-9717/7/3/170es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (grant DPI2016-81002-R)es
dc.description.projectEuropean Union’s Horizon 2020 research and innovation program. grant agreement no 723575
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/723575
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem