Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/56704
Título
Comparative study of neural network frameworks for the next generation of adaptive optics systems
Autor
Año del Documento
2017
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2017, vol. 17, n. 6, p. 1263
Resumen
Many of the next generation of adaptive optics systems on large and extremely large telescopes require tomographic techniques in order to correct for atmospheric turbulence over a large field of view. Multi-object adaptive optics is one such technique. In this paper, different implementations of a tomographic reconstructor based on a machine learning architecture named “CARMEN” are presented. Basic concepts of adaptive optics are introduced first, with a short explanation of three different control systems used on real telescopes and the sensors utilised. The operation of the reconstructor, along with the three neural network frameworks used, and the developed CUDA code are detailed. Changes to the size of the reconstructor influence the training and execution time of the neural network. The native CUDA code turns out to be the best choice for all the systems, although some of the other frameworks offer good performance under certain circumstances.
Materias Unesco
33 Ciencias Tecnológicas
Palabras Clave
Adaptive optics
Neural networks
Tomographic reconstructor
Parallel processing
Revisión por pares
SI
Patrocinador
Ministerio de Economía y Competitividad through grant AYA2014-57648-P
Gobierno del Principado de Asturias (Consejería de Economía y Empleo), through grant FC-15-GRUPIN14-017
This work is also funded by the UK Science and Technology Facilities Council, grant ST/K003569/1, and a consolidated grant ST/L00075X/1
Gobierno del Principado de Asturias (Consejería de Economía y Empleo), through grant FC-15-GRUPIN14-017
This work is also funded by the UK Science and Technology Facilities Council, grant ST/K003569/1, and a consolidated grant ST/L00075X/1
Version del Editor
Propietario de los Derechos
© 2017 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional