Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Martín, Manuel
dc.contributor.authorCarro Martínez, Belén 
dc.contributor.authorSánchez Esguevillas, Antonio Javier
dc.contributor.authorLloret, Jaime
dc.date.accessioned2022-11-09T12:43:49Z
dc.date.available2022-11-09T12:43:49Z
dc.date.issued2017
dc.identifier.citationSensors, 2017, vol. 17, n. 9, p. 1967es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/56882
dc.descriptionProducción Científicaes
dc.description.abstractThe purpose of a Network Intrusion Detection System is to detect intrusive, malicious activities or policy violations in a host or host’s network. In current networks, such systems are becoming more important as the number and variety of attacks increase along with the volume and sensitiveness of the information exchanged. This is of particular interest to Internet of Things networks, where an intrusion detection system will be critical as its economic importance continues to grow, making it the focus of future intrusion attacks. In this work, we propose a new network intrusion detection method that is appropriate for an Internet of Things network. The proposed method is based on a conditional variational autoencoder with a specific architecture that integrates the intrusion labels inside the decoder layers. The proposed method is less complex than other unsupervised methods based on a variational autoencoder and it provides better classification results than other familiar classifiers. More important, the method can perform feature reconstruction, that is, it is able to recover missing features from incomplete training datasets. We demonstrate that the reconstruction accuracy is very high, even for categorical features with a high number of distinct values. This work is unique in the network intrusion detection field, presenting the first application of a conditional variational autoencoder and providing the first algorithm to perform feature recovery.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationIntrusion detectiones
dc.subject.classificationVariational methodses
dc.subject.classificationConditional variational autoencoderes
dc.subject.classificationFeature recoveryes
dc.subject.classificationNeural networkses
dc.titleConditional variational autoencoder for prediction and feature recovery applied to intrusion detection in loTes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2017 The Author(s)es
dc.identifier.doi10.3390/s17091967es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/17/9/1967es
dc.identifier.publicationfirstpage1967es
dc.identifier.publicationissue9es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume17es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad y el Fondo de Desarrollo Regional (FEDER) dentro del proyecto “Distribución inteligente de servicios multimedia utilizando redes cognitivas adaptativas definidas por software”, Ref: TIN2014-57991-C3-1-Pes
dc.description.projectMinisterio de Economía y Competitividad y el Fondo de Desarrollo Regional (FEDER) dentro del proyecto “Inteligencia distribuida para el control y adaptación de redes dinámicas definidas por software", Ref: TIN2014-57991-C3-2-Pes
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem