Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorBaladrón García, Carlos 
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorCarro Martínez, Belén 
dc.contributor.authorSánchez Esguevillas, Antonio Javier
dc.contributor.authorLloret, Jaime
dc.date.accessioned2022-11-18T13:13:08Z
dc.date.available2022-11-18T13:13:08Z
dc.date.issued2013
dc.identifier.citationEnergies, 2013, vol. 6, n. 3, p. 1385-1408es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/57244
dc.descriptionProducción Científicaes
dc.description.abstractElectricity is indispensable and of strategic importance to national economies. Consequently, electric utilities make an effort to balance power generation and demand in order to offer a good service at a competitive price. For this purpose, these utilities need electric load forecasts to be as accurate as possible. However, electric load depends on many factors (day of the week, month of the year, etc.), which makes load forecasting quite a complex process requiring something other than statistical methods. This study presents an electric load forecast architectural model based on an Artificial Neural Network (ANN) that performs Short-Term Load Forecasting (STLF). In this study, we present the excellent results obtained, and highlight the simplicity of the proposed model. Load forecasting was performed in a geographic location of the size of a potential microgrid, as microgrids appear to be the future of electric power supply.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/*
dc.subject.classificationArtificial neural networkes
dc.subject.classificationDistributed intelligencees
dc.subject.classificationShort-term electric load forecastinges
dc.subject.classificationSmart grides
dc.subject.classificationMicrogrides
dc.subject.classificationMultilayer perceptrones
dc.titleShort-term load forecasting for microgrids based on artificial neural networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2013 The Author(s)es
dc.identifier.doi10.3390/en6031385es
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/6/3/1385es
dc.identifier.publicationfirstpage1385es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage1408es
dc.identifier.publicationtitleEnergieses
dc.identifier.publicationvolume6es
dc.peerreviewedSIes
dc.identifier.essn1996-1073es
dc.rightsAttribution 3.0 Unported*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem