Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández Callejo, Luis | |
dc.contributor.author | Baladrón García, Carlos | |
dc.contributor.author | Aguiar Pérez, Javier Manuel | |
dc.contributor.author | Carro Martínez, Belén | |
dc.contributor.author | Sánchez Esguevillas, Antonio Javier | |
dc.contributor.author | Lloret, Jaime | |
dc.date.accessioned | 2022-11-18T13:13:08Z | |
dc.date.available | 2022-11-18T13:13:08Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Energies, 2013, vol. 6, n. 3, p. 1385-1408 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/57244 | |
dc.description | Producción Científica | es |
dc.description.abstract | Electricity is indispensable and of strategic importance to national economies. Consequently, electric utilities make an effort to balance power generation and demand in order to offer a good service at a competitive price. For this purpose, these utilities need electric load forecasts to be as accurate as possible. However, electric load depends on many factors (day of the week, month of the year, etc.), which makes load forecasting quite a complex process requiring something other than statistical methods. This study presents an electric load forecast architectural model based on an Artificial Neural Network (ANN) that performs Short-Term Load Forecasting (STLF). In this study, we present the excellent results obtained, and highlight the simplicity of the proposed model. Load forecasting was performed in a geographic location of the size of a potential microgrid, as microgrids appear to be the future of electric power supply. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | * |
dc.subject.classification | Artificial neural network | es |
dc.subject.classification | Distributed intelligence | es |
dc.subject.classification | Short-term electric load forecasting | es |
dc.subject.classification | Smart grid | es |
dc.subject.classification | Microgrid | es |
dc.subject.classification | Multilayer perceptron | es |
dc.title | Short-term load forecasting for microgrids based on artificial neural networks | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2013 The Author(s) | es |
dc.identifier.doi | 10.3390/en6031385 | es |
dc.relation.publisherversion | https://www.mdpi.com/1996-1073/6/3/1385 | es |
dc.identifier.publicationfirstpage | 1385 | es |
dc.identifier.publicationissue | 3 | es |
dc.identifier.publicationlastpage | 1408 | es |
dc.identifier.publicationtitle | Energies | es |
dc.identifier.publicationvolume | 6 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1996-1073 | es |
dc.rights | Attribution 3.0 Unported | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution 3.0 Unported