Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Martínez, Víctor | |
dc.contributor.author | Baladrón García, Carlos | |
dc.contributor.author | Gómez Gil, Jaime | |
dc.contributor.author | Ruiz Ruiz, Gonzalo | |
dc.contributor.author | Navas Gracia, Luis Manuel | |
dc.contributor.author | Aguiar Pérez, Javier Manuel | |
dc.contributor.author | Carro Martínez, Belén | |
dc.date.accessioned | 2022-11-21T10:38:45Z | |
dc.date.available | 2022-11-21T10:38:45Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Sensors, 2012, vol. 12, n. 10, p. 14004-14021 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/57270 | |
dc.description | Producción Científica | es |
dc.description.abstract | This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | * |
dc.subject.classification | Estimation | es |
dc.subject.classification | Prediction | es |
dc.subject.classification | Artificial Neural Networks (ANN) | es |
dc.subject.classification | Tobacco drying process | es |
dc.subject.classification | Signal processing | es |
dc.title | Temperature and relative humidity estimation and prediction in the tobacco drying process using artificial neural networks | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2012 The Author(s) | es |
dc.identifier.doi | 10.3390/s121014004 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/12/10/14004 | es |
dc.identifier.publicationfirstpage | 14004 | es |
dc.identifier.publicationissue | 10 | es |
dc.identifier.publicationlastpage | 14021 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 12 | es |
dc.peerreviewed | SI | es |
dc.description.project | Centro para el Desarrollo Tecnológico Industrial (CDTI), proyecto "Mejora de la competitividad del sector del tabaco en Extremadura: nuevos procesos y productos" (under project IDI-20100986) | es |
dc.description.project | Junta de Castilla y León, financiado por el Plan Regional de Proyectos de Investigación (proyecto VA034A10-2) | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | Attribution 3.0 Unported | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |
dc.subject.unesco | 31 Ciencias Agrarias | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution 3.0 Unported