Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Martínez, Víctor
dc.contributor.authorBaladrón García, Carlos 
dc.contributor.authorGómez Gil, Jaime 
dc.contributor.authorRuiz Ruiz, Gonzalo
dc.contributor.authorNavas Gracia, Luis Manuel 
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorCarro Martínez, Belén 
dc.date.accessioned2022-11-21T10:38:45Z
dc.date.available2022-11-21T10:38:45Z
dc.date.issued2012
dc.identifier.citationSensors, 2012, vol. 12, n. 10, p. 14004-14021es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/57270
dc.descriptionProducción Científicaes
dc.description.abstractThis paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/*
dc.subject.classificationEstimationes
dc.subject.classificationPredictiones
dc.subject.classificationArtificial Neural Networks (ANN)es
dc.subject.classificationTobacco drying processes
dc.subject.classificationSignal processinges
dc.titleTemperature and relative humidity estimation and prediction in the tobacco drying process using artificial neural networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2012 The Author(s)es
dc.identifier.doi10.3390/s121014004es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/12/10/14004es
dc.identifier.publicationfirstpage14004es
dc.identifier.publicationissue10es
dc.identifier.publicationlastpage14021es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume12es
dc.peerreviewedSIes
dc.description.projectCentro para el Desarrollo Tecnológico Industrial (CDTI), proyecto "Mejora de la competitividad del sector del tabaco en Extremadura: nuevos procesos y productos" (under project IDI-20100986)es
dc.description.projectJunta de Castilla y León, financiado por el Plan Regional de Proyectos de Investigación (proyecto VA034A10-2)es
dc.identifier.essn1424-8220es
dc.rightsAttribution 3.0 Unported*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco31 Ciencias Agrariases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem