Mostrar el registro sencillo del ítem

dc.contributor.authorRuiz Gómez, Saúl José 
dc.contributor.authorGómez Peña, Carlos 
dc.contributor.authorPoza Crespo, Jesús 
dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorTola Arribas, Miguel Ángel 
dc.contributor.authorCano, Mónica
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2022-11-23T13:32:46Z
dc.date.available2022-11-23T13:32:46Z
dc.date.issued2018
dc.identifier.citationEntropy, 2018, vol. 20, n. 1, p. 35es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/57386
dc.descriptionProducción Científicaes
dc.description.abstractThe discrimination of early Alzheimer’s disease (AD) and its prodromal form (i.e., mild cognitive impairment, MCI) from cognitively healthy control (HC) subjects is crucial since the treatment is more effective in the first stages of the dementia. The aim of our study is to evaluate the usefulness of a methodology based on electroencephalography (EEG) to detect AD and MCI. EEG rhythms were recorded from 37 AD patients, 37 MCI subjects and 37 HC subjects. Artifact-free trials were analyzed by means of several spectral and nonlinear features: relative power in the conventional frequency bands, median frequency, individual alpha frequency, spectral entropy, Lempel–Ziv complexity, central tendency measure, sample entropy, fuzzy entropy, and auto-mutual information. Relevance and redundancy analyses were also conducted through the fast correlation-based filter (FCBF) to derive an optimal set of them. The selected features were used to train three different models aimed at classifying the trials: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and multi-layer perceptron artificial neural network (MLP). Afterwards, each subject was automatically allocated in a particular group by applying a trial-based majority vote procedure. After feature extraction, the FCBF method selected the optimal set of features: individual alpha frequency, relative power at delta frequency band, and sample entropy. Using the aforementioned set of features, MLP showed the highest diagnostic performance in determining whether a subject is not healthy (sensitivity of 82.35% and positive predictive value of 84.85% for HC vs. all classification task) and whether a subject does not suffer from AD (specificity of 79.41% and negative predictive value of 84.38% for AD vs. all comparison). Our findings suggest that our methodology can help physicians to discriminate AD, MCI and HC.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationAlzheimer’s diseasees
dc.subject.classificationMild cognitive impairmentes
dc.subject.classificationElectroencephalography (EEG)es
dc.subject.classificationSpectral analysises
dc.subject.classificationNonlinear analysises
dc.subject.classificationMulticlass classification approaches
dc.titleAutomated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairmentes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2018 The Author(s)es
dc.identifier.doi10.3390/e20010035es
dc.relation.publisherversionhttps://www.mdpi.com/1099-4300/20/1/35es
dc.identifier.publicationfirstpage35es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleEntropyes
dc.identifier.publicationvolume20es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad y “Fondo Europeo de Desarrollo Regional” (FEDER) proyecto “Análisis y obtención del genoma entre el completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer” (“Programa de Cooperación Interreg V-A España-Portugal, POCTEP 2014–2020”),(underl proyect TEC2014-53196-R)es
dc.description.projectJunta de Castilla y León - Consejería de Educación y FEDER en el marco del proyecto VA037U16.es
dc.identifier.essn1099-4300es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco12 Matemáticases
dc.subject.unesco32 Ciencias Médicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem