Mostrar el registro sencillo del ítem

dc.contributor.authorKumaravel, Vignesh
dc.contributor.authorRhatigan, Stephen
dc.contributor.authorMathew, Snehamol
dc.contributor.authorMichel, Marie Clara
dc.contributor.authorBartlett, John
dc.contributor.authorNolan, Michael
dc.contributor.authorHinder, Steven J.
dc.contributor.authorGasco Guerrero, Antonio María 
dc.contributor.authorRuiz Palomar, César
dc.contributor.authorHermosilla Redondo, María Daphne 
dc.contributor.authorPillai, Suresh C.
dc.date.accessioned2022-11-29T13:16:59Z
dc.date.available2022-11-29T13:16:59Z
dc.date.issued2020
dc.identifier.citationJournal of Physics: Materials, 2020, Vol. 3, Nº. 2, 025008es
dc.identifier.issn2515-7639es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/57514
dc.descriptionProducción Científicaes
dc.description.abstractThis work outlines an experimental and theoretical investigation of the effect of molybdenum (Mo) doping on the oxygen vacancy formation and photocatalytic activity of TiO2. Analytical techniques such as x-ray diffraction (XRD), Raman, x-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to probe the anatase to rutile transition (ART), surface features and optical characteristics of Mo doped TiO2 (Mo–TiO2). XRD results showed that the ART was effectively impeded by 2 mol% Mo doping up to 750 °C, producing 67% anatase and 33% rutile. Moreover, the crystal growth of TiO2 was affected by Mo doping via its interaction with oxygen vacancies and the Ti–O bond. The formation of Ti–O–Mo and Mo–Ti–O bonds were confirmed by XPS results. Phonon confinement, lattice strain and non-stoichiometric defects were validated through the Raman analysis. DFT results showed that, after substitutional doping of Mo at a Ti site in anatase, the Mo oxidation state is Mo6+ and empty Mo-s states emerge at the titania conduction band minimum. The empty Mo-d states overlap the anatase conduction band in the DOS plot. A large energy cost, comparable to that computed for pristine anatase, is required to reduce Mo–TiO2 through oxygen vacancy formation. Mo5+ and Ti3+ are present after the oxygen vacancy formation and occupied states due to these reduced cations emerge in the energy gap of the titania host. PL studies revealed that the electron–hole recombination process in Mo–TiO2 was exceptionally lower than that of TiO2 anatase and rutile. This was ascribed to introduction of 5s gap states below the CB of TiO2 by the Mo dopant. Moreover, the photo-generated charge carriers could easily be trapped and localised on the TiO2 surface by Mo6+ and Mo5+ ions to improve the photocatalytic activity.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIOP Publishinges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPhotocatalysises
dc.subjectNanosciencees
dc.subjectNanotechnologyes
dc.subject.classificationTiO2es
dc.titleMo doped TiO2: impact on oxygen vacancies, anatase phase stability and photocatalytic activityes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Author(s)es
dc.identifier.doi10.1088/2515-7639/ab749ces
dc.relation.publisherversionhttps://iopscience.iop.org/journal/2515-7639es
dc.identifier.publicationfirstpage025008es
dc.identifier.publicationissue2es
dc.identifier.publicationtitleJournal of Physics: Materialses
dc.identifier.publicationvolume3es
dc.peerreviewedSIes
dc.description.projectScience Foundation Ireland (SFI) through the ERA.Net for Materials Research and Innovation (M-ERA.Net 2), SFI Grant Number SFI/16/M-ERA/3418 (RATOCAT) and Horizon 2020 grant (685451)es
dc.identifier.essn2515-7639es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem